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CHAPTERI

INTRODUCTION

It is well knownthat the electromagnetic (EM) scattering

properties of a body are a function of both, its geometrical and

electrical (or material) parameters. In the last few years, there has

been a renewedinterest in understanding the _ff_ct of the material

properties of a body on its EMscattering behavior. This subject is of

great importance in manyapplications. Radar absorbing materials are

often used to cover targets in order to reduce their EMscattering;

however, in most cases the materials are designed to reduce the specular

contributions [1] from the body without taking into account the

diffraction from edges of the absorber coatings, creeping waves, and

surface waves on the coatings. Thus, it is necessary to examine the

effect that the material properties have on these non-specular

contributions to the scattered field which maydominate over a certain

range of aspects. Figure 1.1 shows an aircraft which is covered by an

absorber in several places to control its EM echo area. Furthermore,

since a typical airplane has many antennas mounted on its surface, the

absorbers, which are not perfectly conducting materials,_will have an
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Figure 1.1. Absorber coated aircraft.



important effect on the radiation patterns of the antennas. As

mentioned in Reference [2], whenthe radiation patterns of antennas

mountedon a small private aircraft were being studied, it was found

that the windshield scattering was a major contributor to the total

pattern.

Single layer and multilayered coated surfaces have been

investigated using a transmission line approach [3], however, this

approach does not consider diffraction effects. Computerprograms have

also been developed [4,5] to solve the integral equations for the

surface fields on two-dimensional bodies subject to the impedance

boundary conditions. These programscan calculate the values of

li.p_ualt_ wiil_ll will .tlltl,e|L_: _ll_: ua_.._._c..aL, L,_J lily1 llvIH vuj_,4._ vt

various shapes.

Another important approach to solve these types of problems are the

high frequency approximation techniques such as the geometrical theory

of diffraction (GTD) and its uniform version, the uniform geometrical

theory of diffraction (UTD) which has been used with great success to

solve a wide variety of electromagnetic problems. One great advantage

of high frequency solutions such as UTD over other types of solutions is

that complex structures can be modelled by simpler ones whose solutions

are known.

The Geometrical Theory of Diffraction (GTD) was developed around

1951 by J.B. Keller [6,7,8]. The GTD is a significant extension of

classical geometrical optics (GO) in which a class of diffracted rays

are systematically introduced in addition to the usual GO rays.

According to the GTD, diffracted rays originate from certain localized

3



regions of a radiating/scattering structure such as at discontinuities

in the geometrical and electrical properties of the structure.

Furthermore, diffracted rays can also be produced at points of grazing

incidence on a smooth convex surface. The diffracted rays, like the

ordinary GOrays, satisfy the generalized Fermat's principle [6]

proposed by Keller.

The initial value of a diffracted ray is given in terms of a

diffraction coefficient which plays a role analogous to the reflection

and transmission coefficients of the GOreflected and transmitted rays.

These diffraction coefficients can be found from the asymptotic

solutions to appropriate canonical problems, i.e., half-plane. These

canonical problems are usually simple geometries which locally simulate

parts of a complex structure that dominate the reflection, transmission

and diffraction effects.

Onedefect of the GTDis that it fails in the transition region

adjacent to shadowand reflection boundaries. In order to overcome this

and other limitations, the uniform geometrical theory of diffraction

(UTD) has been introduced [9,10,11]. The UTDrequires that the

diffracted field compensatethe discontinuity in the GOfield at the

shadowand reflection boundaries so that the total high-frequency field

is continuous everywhere away from the radiating or scattering body. It

is noted that the diffracted field generally assumesits largest value

near these boundaries where the GTDfails.

The object of this study is to obtain an approximate UTDsolution

to the problem of scattering by a thin dielectric/ferrite half-plane

4



either by itself or whenit is placed on a perfect conductor of

electricity or magnetismas shownin Figures 1.2 and 1.3. The

half-plane in Figures 1.2 and 1.3 can be excited by either an obliquely

incident EMplane or surface wave field. In the present work, the

thickness of the dielectric/ferrite half-plane is restricted so that

only the dominant TE and TMtype surface wave fields can exist at any

given operating frequency. This problem has manyapplications in the

study of diffraction by dielectric/ferrite obstacles with edges as

shownin Figure 1.1, and in the theory of surface wave antennas.

Furthermore, it is an important canonical problem for the UTDsince it

extends the UTDedge diffraction solutions from perfectly conducting to

_^_^4-_k1^ _^^_4-_4^_ _ _-&,^,.,_ ,i_ ¢_4-_ lit 4-I,.,^ _^1,,4-4^_ 4-_ 4-k_

problem of the diffraction by the dielectric/ferrite half-plane of

Figure 1.2 will be synthesized from the solutions to the related

problems of the diffraction by a dielectric/ferrite half-plane of half

the original thickness when it is placed on perfectly conducting

electric or magnetic surfaces of infinite extent as depicted in Figure

•1.3. This geometry pertaining to the latter set of problems, which is

referred to throughout this report as the dielectric/ferrite bisection,

can be excited by either an obliquely incident plane or surface wave

field.

An interesting phenomenon which does not take place in the case of

diffraction by a perfectly conducting half-plane is the coupling between

the TE and TM modes which is present in the dielectric/ferrite

half-plane case. This coupling exists only for an obliquely incident

field. Thus, for the special case of normal incidence on the edge,
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Figure 1.2. Dielectric/ferrite half-plane problem, Note that TE and TM
signify that both a transverse electric and magnetic
polarizations are included in the total solution,



which is depicted in Figure 1.4, there is no coupling between the TE and

TM modes and obviously its solution is less complicated.

The problem of the diffraction by a dielectric half-plane has been

studied by several authors in the past. Pistol'kors [12] uses the

Fresnel reflection coefficient of the dielectric half-plane in a vector

Kirchhoff approximation. His solution violates reciprocity except in

the shadow boundary directions, and he does not include surface waves.

Khrebet [13] also uses the Fresnel reflection coefficient to

approximately satisfy the boundary conditions on the field which in turn

is expressed in terms of an integral representation similar to

Oberhettinger's half-plane diffraction integral [14]. As in

Pistol'kor's case, the solution obtained by Khrebet also does not

include surface waves, and it does not satisfy reciprocity except in the

directions of the shadow boundaries. Mohsen and Hamid [15,16] solved

the problem of the diffraction by a dielectric loaded, perfectly

conducting wedge. Their solution is similar to Khrebet's solution

except that they use the more general Oberhettinger wedge diffraction

type integral. More recently, Anderson [17] has solved the problem of

the diffraction by a thin dielectric half-plane by replacing the

dielectric with an equivalent polarization current sheet. He solves only

for the TMz polarization using the Wiener-Hopf procedure, and his

solution can not be directly extended to the other polarization.

Furthermore, Anderson considers only the special case of normal

incidence. Burnside [2] has proposed a heuristic extension of the UTD

solution for a perfectly-conducting wedge to treat the diffraction by a

7
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lossless dielectric half-plane by incorporating the Fresnel reflection

and transmission coefficients for a dielectric slab. This solution

which is somewhat similar to that in [13,15,16] has been shown [18,19]

to give good accuracy for angles of incidence away from grazing.

However, it also does not satisfy reciprocity away from the optical

shadow boundaries and it does not include the surface waves excited at

the edge of the half-plane, which are important in many applications.

Nevertheless, unlike the previous two-dimensional solutions [13,15,16],

the solution in [2] has been developed to approximately analyze both the

two dimensional as well as the three-dimensional case of obliquely

incident EM plane and spherical waves on the edge of a dielectric

hal f-plane.

As mentioned earlier, the solution to the problem of the

diffraction by a dielectric/ferrite half-plane in Figure 1.2 is

synthesized in the present work from the solutions to the bisection

problems shown in Figure 1.3, which can have an even or odd excitation.

The dielectric/ferrite bisection (DFB) problem is still a fairly

complicated problem, so the solution to the DFB problem of Figure 1.3 is

obtained approximately via UTD considerations from the solution to the

related problem of the diffraction by a two-part planar surface in which

one part is a perfect conductor (of electricity or magnetism) and the

other part is an impedance surface as shown in Figure 2.5. The new

geometry, which is depicted in Figure 2.5, is referred to as the

impedance bisection and it is amenable to snlution by the Wiener-Hopf

technique. Since it is desirable to deal with a scalar problem rather

I0



than a vector problem, the scalarization of the impedance bisection

problem is addressed in Chapter II together with the details of the

original DFB problem. It is shown that the field or vector potential

components that scalarize the vector problem depend on whether the

incident field is obliquely or normally incident on the edge.

As stated before, there is no coupling between the TE and TM fields

for the special case of normal incidence, which makes it simpler than

the more general case of oblique incidence. Thus, in Chapter Ill, the

impedance bisection problem for the case of normal incidence is solved

first, using the Wiener-Hopf method. The Wiener-Hopf equation is

obtained by Jones' method, which is briefly described in Section D of

Chapter II. It is shown that the solutions to the Wiener-Hopf equations

for both TEz and TMz polarizations can be expressed as integrals, which

in general can not be integrated in closed form; here, z is parallel to

the edge formed by the impedance discontinuity. Next, the integrals are

evaluated asymptotically by the saddle point method.

The more general case of oblique incidence is discussed in Chapter

IV. It is shown that identical Wiener-Hopf equations to the ones

obtained in Chapter Ill are also obtained for the field components Ey

and Hy which are normal to the surface. However, because of the

different edge behavior of the normal field components Ey and Hy in the

3-D case as compared to those of the tangential components Ez and Hz

used in the 2-D case, the final solutions are not the same in these two

cases. Furthermore, it is shown that the edge condition requires that

11



there be a coupling between the TM and TE fields as mentioned above.
Y Y

The integral expressions for the fields Ey and Hy are then evaluated

asymptotically by the saddle point method in Chapter IV.

Having obtained the solutions for the simpler impedancebisection

problem, the next task is to modify them according to the UTDrecipe so

as to arrive at an approximate but accurate solution to the problem in

Figure 1.3 and then subsequently synthesize the solution to the problem

in Figure 1.2. In Chapter V, two methods are discussed for obtaining

the DFBsolutions from the impedancebisection solutions already

obtained in Chapters Ill and IV. The first method addresses the problem

of obtaining a value for the impedanceZs in terms of the permeability,

permittivity, and thickness of the grounded dielectric/ferrite

half-plane. The second method, which is considered more accurate than

the first one, starts by casting the impedancebisection solutions into

the UTDform involving reflection and diffraction coefficients, and also

the surface wave propagation (_p) and attenuation ({a) vectors,

respectively. Note that the vectors, _p and _a can be easily obtained

from the surface wave field parameters B and _. The reflection

coefficients, and the surface wave constants _ and B of the IBS are

replaced by the corresponding exact coefficients for the grounded

dielectric/ferrite slab case which are well known. It is noted that

for a specific _r' Ur' and kd, the _ and Bmust be computedfrom the

roots of a transcendental equation. Oncethis is done, the exact

geometrical optics field for the grounded dielectric/ferrite slab is

obtained. Also, the resulting diffracted field for the

dielectric/ferrite bisection (DFB) case of Figure 1.3 maintains

12



continuity of the total field at the reflection shadowboundary.

However, an additional minor modification is introduced heuristically in

the resulting diffracted field so that it now also satisfies

reciprocity.

Since the final goal of this study is to obtain the solution for

the half-plane problem of Figure 1.2, Chapter Vl discusses the manner in

which the dielectric/ferrite bisection solutions are superposed to

obtain the solution for this dielectric/ferrite half-plane problem.

Furthermore, it is also shownin this chapter how the geometrical

optics and diffracted fields can be written in a compact form by

expressing these fields in their natural "ray-fixed" coordinate systems.

In order to verify the accuracy of the results for the half-plane

problem of Figure 1.2, the UTDsolutions developed in this study are

used to compute the scattering by a dielectric/ferrite strip which can

be excited by either a plane wave or a line source. These solutions are

comparedwith the solutions obtained via the momentmethod (MM).

Chapter VII discusses the momentmethodsolution for a dielectric strip.

In this chapter, the impedancematrix is computedfor the general case

of oblique incidence by a plane waveof TE or TMpolarization. It is

shownthat the impedancematrix can be simplified whenthe plane wave is

normally incident or for the case of line source excitation.

In Chapter VIII, the UTDsolutions for the dielectric strip are

comparedwith the independent momentmethod solutions, and both results

are shownto agree very well. It is shownhow the UTDsolutions give

insight into the type of scattering that occurs from the strip.

Examplesare shown, where by adding more surface wave interactions on

13



the strip, the agreement between the UTD and moment method solutions

improves for near grazing angles of incidence on the strip. As

expected, these surface wave effects become significant for grazing

angles of incidence and diffraction. Thus, a useful characteristic of

the UTD technique is identified, which is that the UTD provides a means

of pinpointing the significant contributions to the total scattered

field that can arise from different parts of a complex structure,

Furthermore, the limitations of the new UTD solutions obtained in

Chapters III through VI and further areas of research related to this

topic are also discussed in Chapter VIII. Finally, in Appendices A

through L, various analytical details are given,

Note that a dielectric/ferrite slab can sustain several surface

wave modes. However, as mentioned in the beginning, it is assumed in

this study that the thickness, permittivity, and permeability of the

slab are adjusted such that only the lowest order (even) surface wave

mode can propagate. Under this restriction, the solution of the

half-plane problem may be constructed approximately with the assumption

that the dielectric/ferrite half-plane has one equivalent diffracting

edge only, even though a half-plane of finite thickness has actually

two edges instead of one. It is found that very accurate solutions for

engineering applications can be obtained under this approximation when

the thickness does not exceed one quarter of a wavelength inside the

dielectric/ferrite medium.

14



Before proceeding to the development of the UTD solutions for the

problems in Figures 1.2 and 1.3, it is worthwhile at this juncture to

comment on the notation and time convention employed in this work.

Since the Wiener-Hopf technique is heavily used in the development

which follows, the time convention e-imt will be adopted for ease of

notation and suppressed from now on. As a result of this convention,

Maxwell's equations in a homogeneous, isotropic and source-free region

take the following form:

÷ -_

V x E = im_ H = ikn o _ (1.1)

V x H : -imc E = -ikY
o (1.2)

V • E = 0 (1.3)

÷

V • H = 0 (1.4)

÷ -),

where E is the electric field, H is the magnetic field, m is the angular

frequency, no is the free-space impedance, and Yo is the free-space

admittance.

The dielectric/ferrite media to be considered here can be

completely specified by the complex permeability u and complex

permittivity c which are complex numbers in the first quadrant such that

and

c = ¢' + ic" with (c', c") > 0 , (1.5)

= u' + i_" with (u', u") > 0 . (1.6)

15



The complexwave numberk is also located in the first quadrant, and it

is written as

k = k r + ik I with (kr, ki) > 0 . (1.7)

Because the Fourier transform will be used throughout this report,

it is convenient to discuss the notation at this point. The function

A

F(s) will denote the Fourier transform of the spatial domain function

f(x). The Fourier Transform in the complex s-plane is defined in

Appendix A where its most important properties relevant to the

Wiener-Hopf technique are summarized.
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CHAPTERII

FORMULATIONOFTHEPROBLEM

A. STATEMENTOFTHEPROBLEM

As mentioned in Chapter I, the main canonical problem considered

here is the EMdiffraction by a thin dielectric/ferrite half-plane as

shownin Figure 1.2 which is excited by a plane or surface wave field.

T+ _: nf rniirem rmr-:llmA _'h:4- _'_m (-ml,,4-_m_ 4-A 4-W4r _.A_4.-_1 m_^kl^_

in Figure 1.2 is synthesized in terms of the other two related canonical

problems depicted in Figure 1.3. First, consider the case of plane wave

excitation as illustrated in Figure 2.1, where ui is the plane wave

incident on the dielectric/ferrite half-plane and (Ul,U2), as defined

below, represent the total field at the observation point (x,y,z). It

will be shown in Sections B and C, where the vector problem is

scalarized, that for the case of oblique incidence on the edge of the

half-plane, it is convenient to define ui, uI and u2 as

i i i

u (x,y,z) = Ey(x,y,z) or Hy(x,y,z) (2.1)

Ul(X,y,z) = Ey(x,y,z) (2.2)
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u2(x,y,z ) = Hy(x,y,z)
(2.3)

Note that both Ey and Hy are non-zero for oblique incidence, because a

coupling occurs between these two field components.

On the other hand, for the special case of normal incidence to the

i
edge of the half-plane, it is convenient to define u, uI and u2 as:

ui(x,y,z) = ui(x,y) = E (x,y) or Hz(x,y)

Ul(X,y,z ) = Ul(X,y) -=u(x,y) = Ez(x,y) or Hz(x,y)

u2(x,y) - 0

(2.4)

(2.5)

(2.6)

It is clear from the definitions in Equations (2.4), (2.5) and

(2.6), that ui, uI and U2 are replaced by ui and u only. It is shown

later that no coupling exists between Ez and Hz for the case of normal

incidence because one can deal independently with either Ez alone or Hz

alone, respectively.

Specifically, the approach for solving the half-plane diffraction

problem of Figure 2.1 consists of the following steps. First of all,

the incident field is expressed as the superposition of four incident

plane waves as indicated in Figure 2.2. In other words, the original

problem is expressed as the superposition of even and odd excitations.

e e
It follows that the total fields uI and u2 are even functions of y,

that is

e e

Ul(X,y,z ) = u1(x,-y,z ) (2.7)

19



u_(x,y,z) : eu2(x,-y,z ) (2.8)

0 0

while the fields uI and u2 are odd functions of y such that

o
u_(x,y,z) = -Ul(X,-y,z ) (2.9)

o
u_(x,y,z) = -u2(x,-y,z ) . (2.10)

Because of Equations (2.7) through (2.10) the configuration with

symmetrical or even excitation will be referred to as the even problem,

while the configuration with the asymmetrical or odd excitation will be

referred to as the odd problem. Due to the even and odd symmetry of the

solutions, it is enough to solve the even and odd problems for the

hal f-space y)O.

After solving the even and odd problems individually, the total

field u(x,y,z) is obtained by a simple superposition of ue and u°.

Thus,

and

e o
Ul(X,y,z ) = Ul(X,lyl,z ) + sign(y)ul(x,lyl,z)

eU2(x,y,z) : u2(x,lyl,z) + sign(y)u (x,lyl,z)

(2.11)

(2.12)

Using image theory [20], one can obtain problems equivalent to the

even and odd configurations as depicted in Figure 2.3. The

configuration corresponding to the even problem will be referred to as

the even bisection problem, while the configuration pertaining to the

odd problem will be referred to as the odd bisection problem.
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Next, consider the case of surface wave excitation. As in the case

of plane wave excitation,

uiSW(x,y,z) = Eisw( isw,
y ,x,y,z) or tiy tx,y,z)

(2.13)

for oblique incidence, or

iSW(x _isw, HiSw,x •u ,y) = Lz £x,y) or z _ 'y) (2.14)

for the special case of normal incidence.

It is well known [21] that surface wave modes guided along a

dielectric/ferrite slab can be classified as even or odd modes. Thus,

an equivalent problem for an even mode incident surface wave field is

the even bisection problem shown in Figure 2.4. On the other hand, if

the incident surface wave is an odd mode, the equivalent problem is the

odd-bisection problem which is also depicted in Figure 2.4.

The even and odd bisection problems are still fairly complicated,

so the next step in this procedure is to temporarily replace the thin

grounded dielectric/ferrite slab by an impedance wall as shown in Figure

2.5. The reason for doing this is because the simpler impedance

boundary contains all the essential characteristics of the thin grounded

dielectric/ferrite slab and because the latter impedance configuration

can be analyzed directly by the Wiener-Hopf procedure. This technique of

replacing the original boundary value problem by an approximate

22
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impedanceboundary condition, also knownas the Leontovich boundary

condition, has been used extensively in the past [21,22,23]. It has

been found that the surface impedanceboundary conditions provide a

useful model in analyzing the effect of the material properties _r and

_r on edgediffraction. Oncethe solutions to the two part impedance

problems in Figure 2.5 are obtained, they can be modified heuristically

via the UTDrecipe to arrive at the solutions to the canonical

dielectric/ferrite bisection problems of Figures 2.3 and 2.4, or of

Figure 1.3. Finally, the solution to the canonical problem in Figure

1.2 can be constructed directly via a superposition of the even and odd

bisection solutions.

B. SCALARIZATIONOFTHE3-D VECTORPROBLEM(OBLIOUEINCIDENCE)

The canonical problem that is considered in this section is

illustrated in Figure 2.6. The electric field E and magnetic field H

satisfy the Helmholtz vector equation

and

(v2+ k2);: o

(y2 + k2) H : 0

, y ) O, Ixl and Izl<-

, y ;' O, Ixl and Izl<==

(2.15)

(2.16)

where k is the free space wave number which is given by

2_T

k : _ : m V'_oe ° (2.17)
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or

The fields E and H also satisfy the following boundary conditions:

÷ ^÷ A ^ ÷

E - (y.E) y = Zs y x H , x < O, y = O, Izl<- (2.18)

Ex = ZsHz ; Ez = -ZsHx , x < O, y = O, Izl<® (2.19)

which constitute the impedance or Leontovich boundary conditions and

y x E = 0 , x > O, y = O, Izl<® (2.20)

or

Ex = O; Ez = 0 , x > O, y = O, Izl<® (2.21)

orl a perfect electric conductor. W,_en the regiorv {x > O, y = O, Izl<®},

is a perfect magnetic conductor, one requires

^ ÷

y x H : 0 , x > O, y = O, IzI<® (2.22)

or

Hx : O; Hz : 0 , x > O, y = O, IzI<® . (2.23)

It is simpler to solve a scalar problem than a vector problem, thus, the

goal of this section is to scalarize the canonical problem depicted in

Figure 2.6. In other words, it is desirable to have decoupled scalar

boundary conditions, and scalar differential equations. This can be

accomplished in two ways:

(1) Choose the normal field components (Ey, Hy) to decouple the

Leontovich boundary condition.
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To prove this statement, one starts with Maxwell equations in a

source-free, homogeneous, isotropic medium. These equations are given

in (1.1)through (1.4).

Next, the tangential derivatives of Equation (2.19) are taken.

That is, the derivatives with respect to x and z such that

aEx _Hz

_z = Zs _ for x < O, y = O, Izl<- (2.24)

BEz aHx

-_z = -Zs _ for x < O, y = O, Izi<® (2.25)

aEx aHz

-_x = Zs aT for x < O, y = O, Izl<® (2.26)

aEz aHx
-_x = -Zs -_x for x < o,y : o, Izl<® . (2.27)

Adding Equations (2.25) and (2.26) and using Equation (1.2), one gets

aEx aEz

_--_+ -_ = Zs H_T aHx7 ZS- _T] = ik _Ey , (2.28)

x < O, y = O, Izl<® .

Subtracting Equation (2.27) from Equation (2.24), and using

Equation (1.1) yields

aEx aEz H_____ aHx-l

BT- a'-R--= iknoHy = Zs L_az + _T__ , (2.29)

x < O, y = o, Izl<-•
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Substituting Equation (1.3) into the left-hand side of Equation

(2.28), one finally obtains

BE Zs
+ ik To Ey : 0 , x < O, y = O, Izl< ® (2.30)

which is one of the decoupled Leontovich boundary conditions. The other

decoupled boundary condition is obtained by substituting Equation (1.4)

into the right side of Equation (2.29), that is

BHy no
B-_- + ik _ My = 0 , x < O, y = O, Izl< ® . (2.31)

To obtain the boundary conditions for the region {x > O, y = O, Izl<®l

one can follow the same procedure as above, but there is a simpler way

of obtaining them by using the results already derived above.

If the half-plane described by {x > O, y = O, Izl<® } is a perfect

electric conductor, which is the limiting case of Zs approaching zero,

it follows from Equations (2.30) and (2.31) that

BEy
B--_-= 0 , x > O, y : O, Izl< ®

and

(2.32)

Hy = 0 , x > O, y : O, Izl< _ . (2.33)

On the other hand, if the half-plane described by {x > O, y = O, Izl<®l

is a perfect magnetic conductor, which is the limiting case of Zs ÷ ®,

one obtains from Equation (2.30) and (2.31) the following expressions:

Ey = 0 , x > O, y : O, Izl< - (2,34)

and
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3_y-_Y-:0 , x > O, y : O, Izl<® • (2.35)

Thus, the decoupling of the boundary conditions has been

accomplished. It is straightforward to decouple the Helmholtz vector

equation. This is done by rewriting equations (2.15) and (2.16) in

rectangular coordinates such that

2 2 aE_'_ _2 a2 2](V + k ) Ey = + _ +_ + k Ey = 0 , (2.36)

y • O, Ixl and Izl<®

k2 ) F_2__ _2 B2 ](V2 Hy _ - _ + k2+ : IBx . Oy_ . _z_ Hy--0 ,

y • o, Ixland Izl<®•

{0 q'l_

This shows that Ey and Hy satisfy Helmholtz scalar equation and

rnmnl_f_¢ _h_ crnl_rJT_Jnn nf _h_ nr_nJn_l v_rtnr nrnhl_m

(2) Choose the vector potentials A = y Ay and Fy = y Fy to

decouple the Leontovich houndary condition.

It follows from [20], and the Lorentz condition for the potentials,

÷ ÷

that the fields E and H can be expressed in terms of Ay and Fy as

follows:

E = - VX(yFy) + ikno Ay + v(v A),)) (2.38)

and

H : vX(yAy) + ikYo Fy + v(v Fy)) (2.39)
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where Ay and Fy satisfy the Helmholtz scalar equation, that is

(V2 + k2) Ay = + _-_ + _ + k Ay = 0 ,

y > O, Ixl and izl<®

(2.40)

2 2 l-_---a2 a2 a2 --[

(V + k )FY = [ Bx_ + _-_+ @z-_+k2-_ 1Fy = 0 , (2.41)

y > O, IxI and Izl<® .

Thus, the differential equation has been already decoupled, and the next

step is to decouple the boundary condition given by Equation (2.19).

First, replacing Ex, Ez, Hx and Hz in Equations (2.19)-(2.23) by

the expressions given in Equations (2.38) and (2.39), one obtains

and

x < O, y = O, Izi<®

I:ZsA'I: 'a 1 BAy- a Zs aFy--

-_x + ikYo a--y--I = Tzz Fy+ i_no a-y11 '

x < o, y = O, iZI< _

(2.42)

(2.43)

for the impedance wall. Likewise, one obtains

a'-_[FY] - ikYo ax iTI ; a-x[Fy] :- ikY az I _-_- I '
I_ _I o I_ _I

(2.44)

x > o,y = o, Izi<®
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for a perfect electric conductor, and

a 1 _ '_F _ I _

[Ay] : - i_no ax I___I ; _x [Ay] - ikn o 3z ' (2.45)

x > O, y = O, Izl<®

for a perfect magnetic conductor.

Next, one arbitrarily assumes that the following two equations are

satisfied by Ay and Fy; namely,

ZsAy+_ _y = o , x <0,y=o,Izl<= (2.46)

and

Zs aF
Fy+_T_- : o • x < O, y=O, Izl<- (2.47)

Using the Expressions (2.46) and (2.47) in Equations (2.42) and

(2.43)• it is easy to see that both Equations (2.42) and (2,43) are

simultaneously satisfied. It follows that the original assumptions

(2.46) and (2.47) are indeed correct. Rewriting (2.46) and (2.47), one

gets for the impedance wall,

Zs-

+ik Ay = 0 , x < O, y = O, Izl<= (2.48)

no

+ik Fy = 0 , x < O, y = O, Izl<- (2.49)

which are the decoupled Leontovich boundary conditions for Ay and Fy.
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Now,assumethe following two equations are true for the perfect

electric conductor:

BAy

Fy O; _y - 0 , x > O, y O, Iz1<® . (2.50)

Substituting (2.50) into (2.44) one verifies that both expressions in

Equation (2.44) are simultaneously satisfied. Therefore, the original

assumption given by Equation (2.50) is correct.

Finally, assumethat the following is true for the perfect magnetic

conductor:

BFy
Ay = O; _--_-= 0 , x > O, y = O, [z!<® . (2.51)

@Fy

Again, substituting for Ay and T in Equation (2.45) by the expressions

given in Equation (2.51), one concludes that both expressions in

Equation (2.45) are simultaneously satisfied. It follows that the

expressions in Equation (2.51) are also true.

Thus, by choosing the normal vector potentials Ay and Fy, one can

also scalarize the original vector problem.

C. SCALARIZATION OF THE 2-D VECTOR PROBLEM (NORMAL INCIDENCE)

As in the more general case of oblique incidence, the vector

problem for the special case of normal incidence can also be scalarized

in two ways:

(1) Choose the tangential field components (Ez and Hz) to decouple

the Leontovich boundary conditions.
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Following a procedure similar to that in Part (1) of Section B, it

can be shown that the Leontovich boundary condition can be decoupled as

fol lows :

no

+ik Ez =0 , x < O, y = 0 (2.52)

= 0 x < O, y = 0 . (2.53)
$

Also, for the case of the perfectly conducting electric wall, the

boundary conditions satisfied by Ez and Hz are

BHz

Ez = O; By - 0 , x > O, y = 0 (2.54)

and the boundary conditions for the perfectly conducting magnetic wall

are

BEz

By = 0 ; Hz = 0 , x > O, y = 0 (2.55)

Next, rewriting Equations (2.15) and (2.16) in rectangular

coordinates, one obtains

2 k2 J--B2 B2 2--J(Vt + ) Ez = 0 = __-_ + _ + k_ Ez = O, Ixl<®,Y ) 0
(2.56)

2 2 --B2 B2 2--J(Vt + k ) Hz = 0 = I_@-'_+_--_ + k _ Hz = O, Ixl<®,y ) 0 (2.57)

which completes the process of scalarizing the original vector problem.
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(2) Choosethe tangential vector potentials (Az, Fz) to decouple

the Leontovich boundary condition.

Again, one can follow a similar procedure as in Part (2) of Section

B to showthat the following is true. The tangential vector potentials

Az and Fz satisfy the following decoupled boundary conditions on the

impedancewall :

_ no

+ ik Az = 0 , x < O, y = 0 (2.58)

Zs-

+ ik Fz = 0 , x < O, y = 0 . (2.59)

On the region {x > O, y = 0I, Az and Fz satisfy the boundary conditions

given by

_Fz

_y = 0 ; Az 0 , x > O, y = 0 (2.60)

for a perfect electric conductor, and

BAz

Fz = 0 ; _ = 0 , x > O, y = 0 (2.61)

for a perfect magnetic conductor.

As in Part (2) of Section B, it follows from [20] and the Lorentz

condition that Az and Fz satisfy the Helmholtz scalar equation, that is

and

2 2 2
2--I(Vt + k ) Az(x,y) = l__x--_+ _ + k Az(X,y) = 0

22 i- 2
2-- I(Vt + k ) Fz(x,y) = l__x-_ + _ + k_ Fz(X,y) = 0

(2.62)

(2.63)
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In conclusion, for the general case of oblique incidence on the

edge, the normal field components (Ey, Hy) or the normal vector

potentials (Ay, Fy) will scalarize the vector problem. On the other

hand, for the special case of normal incidence on the edge , the

tangential field components (Ez, Hz) or the tangential vector potentials

(Az, Fz) will scalarize the original vector problem. Thus, essentially

what has been done is to transform the vector problem to two scalar

ones.

This study will only consider the case when Z is a constant and
s

scalar, corresponding to a homogeneous, isotropic impedance sheet. For

the more general case when Zs is a tensor and is a function of position,

it is much more difficult and usually not possible to scalarize the

Leontovich boundary conditions. In [1], Senior studies the case when

Zs is a tensor, but not a function of position, corresponding to a

homogeneous, ani_otrnpic impedance sheet_

D. METHODS OF SOLUTION

1. Maliuzhinets' Method

As mentioned in [1], there are two basic methods of solution of

the canonical problem presented in Sections B and C. The first method

is that of Maliuzhinets [24] and is the more general of the two, because

it is applicable to wedge-shaped regions as well. The total field is

expressed in cylindrical coordinates in the form of a Sommerfeld

integral with an unknown weight function in the integrand which is

deduced via the use of boundary conditions and complicated function
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theoretic manipulations. For more details, refer to [24] where only the

case of normal incidence is considered.

Different high-frequency approximations of the exact solution

obtained by Maliuzhinets [24] in 1959 have been derived in [25] through

[30] for various geometries which are special cases of the wedge.

Recently, the high frequency solution of Maliuzhinets [24] has been made

uniformly valid across the shadowboundaries and it has been cast into

the UTDform [31] which is useful for further generalization of this

solution. The solution presented in [31] is thus expressed in terms of a

UTDdiffraction coefficient which has the samegeneral structure as that

for the perfectly conducting wedge [11].

2. Wiener-Hopf Method

The second method which will be used in this study is the

Wiener-Hopf method. Whenthe fields and currents are expressed in

cartesian (rectangular) coordinates, the canonical problem presented in

Sections B and C becomesa planar two-part boundary value problem which

can be solved by the Wiener-Hopf technique. It can not be solved by the

more commonmethod of separation of variables because the boundary

conditions are different in the two semi-infinite regions

{x < O, y = O, Izl<®} and {x > O, y = O, Izl<®}.

As indicated by Noble [32], there are three basic ways of arriving

at the Wiener-Hopf equation which must then be solved via the

Wiener-Hopf procedure.
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(i) Jones' Method

This method due to D.S. Jones [33] obtains the Wiener-Hopf equation

by simply applying Fourier transforms directly to the partial

differential equation and boundary conditions. One minor disadvantage

of this method is that sometimes in very complicated problems it may not

be immediately obvious that the transform equations can be reduced to

the Wiener-Hopf equation. Jones' method will be used in Chapters III

and IV to derive the Wiener-Hopf equation.

(ii) Integral Equation Method

In this method, the integral equation is usually obtained by the

Green's function technique. A typical integral equation has the

following form:

J Q(x) g(z-x)dx = q(z) , 0 < z < ® (2.64)

0

where g(z-x) and q(z) are known functions, and 8(x) is the ,inknown

function. The function g(z-x) is usually referred to as the kernel of

the integral equation and is generally related to a Green's function

used in the formulation of the integral equation.

In many cases, it is not obvious which Green's function should be

chosen, and the Fourier transforms of the kernels (Green's functions)

introduced by this method may not be easy to obtain. This is completely

avoided in Jones' method. The main advantage of the integral equation
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method seemsto be that it is very easy to recognize problems that can

be solved by the Wiener-Hopf technique, because the integral equation in

(2.64) has a semi-infinite range. For more details refer to [32] and

[34] where a more complete treatment of this method is done. This

method will not be used in this study. In [35], Senior obtains the

solution for the diffraction by an impedancehalf-plane by solving

coupled Wiener-Hopf integral equations for the Fourier transforms of the

electric and magnetic currents.

(iii) Dual Integral Method

The main characteristic of this method is that the partial

differential equation is solved in the transform domain, but unlike

Jones' method, the solution is inverted to the space-domain where the

boundary conditions are applied. This gives rise to a pair of coupled

integral equations. Edgeconditions do not appear explicitly in this

method, but they are assumedimplicitly, because one assumesthat

certain orders of integration can be interchanged and certain integrals

are convergent. After the solution has been completed, one can check if

these assumptions were valid or not. Questions of rigor and uniqueness

are not as obviously addressed here as in the first two methods.

3. Solution of the Wiener-Hopf Equation

In this section, a brief outline of the formal procedure for

solving the Wiener-Hopf equation will be given. A more detailed
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discussion is available in Noble [32], and in Mittra and Lee [34].

A typical Wiener-Hopf equation is given by

A A

F+(x) G(s) = K(S) - C_(s) , T_ < T < T+ (2.65)

where F+(s) and C.(s) are unknown functions', whereas, K(s) and G(s) are

known functions. Note that there are two unknown functions and only one

equation. Furthermore, Equation (2.65) holds only in the strip defined

by T_ < T < T+ of the complex s-plane. With the Wiener-Hopf procedure

one can accomplish the apparently impossible task of solving for two

unknown functions from only one equation. However, there is one more

pi_cP nf infnrmatinn that it crtlcial fnr _nlving _q,,mfinn (P _) A:
- .............................................. .vw • ,,_

the notation in (2.65) implies, F+(s) is regular in the upper half-plane

described by • > T_, while E (s) is regular in the lower half s-plane

T < _+. Furthermore, G(s) and K(s) are regular in the strip defined by

T_ < I < I+ ,

The fundamental step in the Wiener-Hopf procedure is the

factorization of the function G(s) into the product of two functions

such that

G(s) : G+(s) G_(s) (2,66)

41

where G+(s) is regular in the upper half s-plane defined by T > T. and

G.(s) is regular in the lower half s-plane defined by T < T+. For

reasons that will become obvious, it is required that G+(s) and G.(s) be

free of zeros in the respective half-planes where each function is

regular. This is possible only if G(s) is free of zeros in the strip

T. < T < T+ [34].



There is a formal procedure for factorizing G(s) which is discussed

in Appendix D. SometimesG+(s) and G_(s) can be found by inspection

when G(s) is a simple function. Substituting (2.66) into (2.65) and

dividing by G_(s) gives

K(s) C (s)

F+(s) G+(s) = G_(s)" G_(s) , T_ < T < _+ , (2.67)

Note that it is possible to divide by G_(s) because it was assumed G_(s)

is nonzero in the half-plane _ < T+. The function F+(s)G+(s) is

analytic in the upper half s-plane T > T while the function
m_

_(s)/G.(s) is analytic in the lower half s-plane T < T+. However,

K(s)/G_(s) can have singularities in both half planes.

The second most important step in the Wiener-Hopf procedure is to

decompose the function K(s)/G_(s) into the sum of two functions such

that

K(s)

G_(S) = D+(S) + D_(S) (2.68)

where D+(s) is regular in the upper half s-plane T > T_, and D_(s) is

regular in the lower half s-plane T < T+. As in the case of

factorizati _on, there is a formal procedure for the decomposition of a

function which is discussed in Appendix E. In this study, the function

K(s)/G_(s) will be simple enough such that it can be decomposed by

inspection as shown in Chapter Ill. Substituting (2.68) into (2.67) and

rearranging terms yields

E (s)

F+(s) G+(s) - D+(s) = D.(s) - G](s) , T_ < T < T+ . (2.69)

42



Figure 2.7 shows the regions of regularity of all the functions involved

in Equations (2.65) and (2.69).

By a careful examination of Equation (2.69) one concludes that the

function on the right-hand side of (2.69) is analytic in the lower

s-plane T < T+, and the function on the left-hand side of (2.69) is

analytic in the upper half s-plane defined by T > T.. Since both half

planes have a common overlapping region described by T_ < T < T+, it

follows by analytic continuation [32] that both sides are equal to an

entire function J(s) (regular in the whole s-plane) such that

C_(s)

J(s) = F+(s)G+(s)- D+(s)= D_(s)- G_(s) for all s (2.70)

where Equation (2.70) holds over the entire s-plane.

Now suppose it can be shown that

iF+(s) G+(s)- D+(s) i < Islp as s ÷ ® for T > T (2.71)
m

•and

C_(s)

I D.(s)- G_(s)I < Islq as s + ® for T < _+ . (2.72)

Then, by the extended form of Liouville's theorem [32], J(s) is a

polynomial P(s) of a degree less than or equal to the integral part of

min(p,q) = n such that

2 n

P(s) = ao + als + a2s + .0. + ans

n i

= ) ais (2.73)
i=0

where the constants ai are unknown.
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Figure 2.7. Regions of regularity of all the functions involved in

Equations (2.65) and (2.69).
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and

Solving for the two unknown functions F+(s) and C.(s) one gets

P(s) + D+(s)

F+(S) = G+(S) (2,74)

C.(s) = [D_(s) - P(S)] G_(s) (2.75)

It follows from (2,73), (2,74) and (2,75) that ^F+(s) and E_(s) are

determined to within a finite number of arbitrary constants which must

be determined otherwise.

The assumption that J(s) is a polynomial is true when one is

dealing with electromagnetic problems, because the functions involved in

Equations (2.71) and (2.72) are restricted to have algebraic growth.

This is due to the edge conditions that the fields have to satisfy near

geometrical singularities. The edge conditions are discussed in

Appendix B. In most problems in electromagnetics, P(s) will be zero, in

A

which case F+(s) and C_(s) will be uniquely determined. Sometimes P(s)

may be a nonzero constant which still has to be determined, Chapter IV

shows how this can be accomplished.
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CHAPTERIll

IMPEDANCEBISECTIONPROBLEM(NORMALINCIDENCECASE)

A. STATEMENTOFTHEPROBLEM

This chapter deals with the analysis of the problem of diffraction

by the two-part impedancegeometry depicted in Figure 3.1. An

infinitely thin screen which is either a perfect electric conductor

(PEC) or a perfect magnetic conductor (PMC) lies on the half-plane

{x>O, y = 01. It is joined to another half-plane {x < O, y = O} which

consists of a homogeneous, isotropic impedance wall characterized by the

impedance Zs which is a constant. Note that the PEC screen can be

characterized by a zero impedance, while the PMC screen is equivalent to

an infinite impedance screen. A plane wave ui is incident from

free-space at an angle ¢' to the x-axis (0 < ¢' < 7). The incident wave

may be of the transverse magnetic (TMz, ui i= Ez) or transverse electric

i i
(TEz, u = Hz) type field relative to the z-axis, Note that there is no

variation of the incident field and the geometry in the z-direction,

hence it is a two-dimensional problem. The total field will be

determined everywhere in the half-space y ) O.
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As shown in Section C of Chapter II, this problem can be scalarized

by dealing with either the tangential field components (Ez, Hz) or the

z-directed potentials (A=zAz, _=ZFz). The tangential field components

will be used here. It follows that the boundary conditions for both TEz

and TM z polarizations are (see Section C, Chapter II) given by

TE z case: Ez = 0

or

[!zI+ ik no_ Hz = 0

, y = 0 , x < 0 (3.1)

d

uj_ Hz : 0 for PEC , y = 0 , x > 0 (3.2)

Hz : 0 for PMC , y = 0 , x > 0 . (3.3)
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TMz case: Hz = 0

+ ik Ez = 0 , y = 0 , x < 0 (3.4)

or

Ez = 0 for PEC , y = 0 • x > 0 (3.5)

_y Ez : 0 for PMC , y : 0 , x > 0 (3.6)

I12

where no = [Uo/eo) is the free space impedance.

Instead of solving four different problems (two polarizations and

PEC or PMC screen), only two problems will be solved: even and odd

problems. For both cases, the function u(x,y) is equal to

FEz for TMz polarization, or
u(x,y) I

I_Hz for TEz polarization

(3.7)

and it satisfies the scalar Helmholtz equation

a2 a2

(V2 t + k2) u(x,y) : [ @x2 + By2 + k2) u(x,y) : 0 for y • 0 (3.8)
and ixi<® .

For the even problem, u(x,y) = Ue(X,y), and the boundary conditions

become

--I

+ ikael ue(x,y)
I

=0 , x<O,y=O (3.9)

and
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d
UefX,y).. = 0dy , x > O, y = 0 (3.10)

where

!

IZs/n o : normalized impedance, TEz polarization

6e = Ino/Zs normalized admittance, TMz polarization " (3.11)

For the odd problem, u(x,y) = Uo(X,y), and the boundary conditions are

gi yen by

ii °• _vv + ikao Uo(X,y) : 0
I_ _I

, x < O, y = 0 (3.12)

and

Uo(X,y) = 0 , x > O, y = 0 (3.13)

where ao has the same definition as 6e. The subscript "e" refers to the

even problem while the subscript %" refers to the odd problem, Let the

incident field be denoted by

I I

i (kxX-kyy)
ui(x,y) = v e , y > 0 (3.14)

where

! !

kx = - kcos¢' ," ky = ksin¢' (3.15)

and v is an arbitrary constant.

equal to

ui(p,_) = v e-ikpcos(@-¢' )

In cylindrical coordinates, ui(x,y) is

, p ) O, 0 < (¢,¢') < _ . (3.16)
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The first step in solving this problem is to consider the geometry

shown in Figure 3.2 where a homogeneous, isotropic impedance wall

occupies the plane y = O. The reason for doing this will become obvious

in the following steps of the analysis.

The field u(p,¢) will be referred to as the unperturbed total field

in the presence of the impedance wall. This problem can be solved by

the well known separation of variables technique [36], because the

boundary conditions given in Equations (3.9) and (3.12) hold for all

values of x such that

By + ik u(x,y) : 0
for Ixl<-,Y : 0 (3.17)

where the subscripts "e" and "o" will be temporarily dropped for

convenience.

p,@}

\
P

_0 ' I_0 )

Figure 3.2. Unperturbed geometry.
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Without going over the details of the solution• the final result can be

written as

_(x,y) : ui(x,y) + _r(x,y) (3.18)

where u_r(x,y) is the reflected field given by

i(kxX+kyy)u'_r(x,y) : vR(a,¢') e • Ixl<®, y • 0 (3.19)

and R(a,¢') is the Fresnel reflection coefficient.

k' - ka ._,y sin -
R(_,¢') - k' + k_ - sin##' + _ " (3.20)

Y

Note that the unperturbed field _(x,y) still satisfies Equation (3.8)

(or the scalar• two-dimensional Helmholtz equation).

As stated in Section D of Chapter II, there are two basic methods

for solving the canonical two part impedanceproblem being considered in

this chapter. In this analysis• the Wiener-Hopf methodwill be used,

and the Wiener-Hopf equation will be obtained by Jones' method in

Section B.
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B. JONES' METHOD

In order to have some order in the analysis, the even problem is

solved first, and then the odd problem will be considered.

1. Even Problem

The total even field Ue(X,y ) can be written as

Ue(X,y) = Ue(X,y) + uS(x,y) for y • O, Ixl<® (3.21)

where _e(X,y) is the even unperturbed field which was defined in

Section Ao

The field uSe(x,y ) which is referred to as the scattered field is

necessary to properly account for the effects of the PEC or PMC screen

lying in the half-plane {x > O, y = 0 I. Note that the definition of the

scattered field use(X,y) is different from the usual definition of

scattered field.

Since the total field Ue(X,y), and the unperturbed field _e(X,y)

s
satisfy the scalar Helmholtz equation, it follows that Ue(X,y) also

satisfies the same equation, that is

I- _2 ;)2 k2-- II _r : o for Ixl< ®, y • 0 . (3.22)

Furthermore, it follows from Equations (3.9), (3.17) and (3.21) that

I"_ + ik Ue(x,y) = 0

I_ J
for y = 0 , x < 0 (3.23)
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the field uS(x,y) also satisfies the Leontovich boundary conditionThus,

for {y = O, x < 0}. For the half-plane {x > O, y = 0}, the boundary

condition given in Equation (3.10) becomes

_) _ i ~r
_y ueS(x'Y) = " Tyy _e (x'y) = -_y [u (x,y) + Ue(X,y)] (3.24)

for y = o, x > 0

Following the notation of Appendix A, let

S(x,y) = ueS+(x,y) + ueS_(x,y) (3 25)Ue •

where Ue+(X,y)S and ue_S(x,y) are the half-range functions defined in

Appendix A. Also, let

i+r, ui _r(x,y ) i+r, i+r,ue ix,y) = (x,y) + = Ue+ ix,y) + Ue_ ix,y) . (3.26)

It follows that Equations (3.23) and (3.24) can be rewritten as follows:

and

ljel+ ika Ue_(X,y) = 0 for y = O, Ixi<- (3.27)

s B , i+r,

-_y Ue+(X,y) = - _y LUe+ ix,y)) for y : o, Ixi<® (3.28)

As stated in Section D of Chapter II, the principal feature of

Jones' method is that the Fourier transform is applied directly to the

differential equation and the boundary conditions. Note that the

Fourier transform being used here is carefully defined in Appendix A,

and it will not be repeated in this chapter. Applying one-sided Fourier
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transforms to Equations (3.27) and (3.28) with respect to the variable

x, one gets

and

I>e+ik Ue _(s,y)= 0

___ B ,^i+r_
By uS+ (s'y) = " Tyy LUe+ £s,y))

for y = 0, T = Ira(s) < T+ (3.29)

for y = 0, T = Im(s) > T_ (3.30)

where s is the complex variable in the Fourier transform domain and the

constants T+ and T_, which are defined in Appendix A, will be determined

later in the analysis. Next, Fourier transforming Equation (3.22) and

using Equation (A.16), one obtains that

]-B2 B2- I ^sI_B-_+ _ Ue(S,y ) = 0 for y • 0, T_ < T < T+ (3.31)

^s
where Ue(S,y) is regular in the strip T_ < T< T+, and B, which is

carefully defined in Appendix C, is given by

B= (k2 _ S2) I/2 • (3.32)

Since (3.31) is a second order differential equations, it has two

solutions, that is

^s (s)eiBY + s)e-iBy
Ue(S,y ) : Ae Be( for y • O, T_ < T < T+ . (3.33)
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Let

B = Br + i BI (3.34)

where Br and BI are real variables. In Appendix C, the branch cut of B

is defined such that BI > 0 in the entire top (proper) Riemannsheet of

the complex s-plane. It is obvious that the second solution of (3.33)

will becomeunboundedas y ÷ ®. It follows from the radiation condition

given in Appendix B that

Be(S) = 0 (3.35)

and us(s,y) becomes

^S(s,y ) : Ae(S)e iByUe for y > 0, T_ < T < T+ (3.36)

^

where Ae(S ) is still unknown at this point. The function Ue(X,y)
can be

rewritten in terms of one-sided Fourier transforms as

ueS(s,y) Ae(s)eiBy ^s ^s: : Ue+(S,y ) + Ue_(S,y)

for y • O, T_ < T < _+

(3.37)

where uS+(s,y) is regular in the upper half s-plane defined by T > T

and ueS_(s,y) is regular in the lower half s-plane defined by • < T+.

Letting y = 0 in Equation (3.37), one gets

_S ^S

Ae(s ) = Ue+(S,O ) + Ue.(S,O) , T <T<T÷
(3.38)

which indicates that Ae(S ) is also regular in the strip defined by

T_ < T < T+.
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Following a similar procedure as above, the one-sided Fourier
i+r

i+r, Substituting Ue+ into
transfom of Ue+ £x,y) will be computednext.

(A.7) yields

Ai+r(s,y ) =
Ue+

I ® i+r, eisxdx ) 0
SUe+ _x,y) for y

O

or

!
I

le ik"1^i+r_.., v -ikyy ¢')e
Ue+ _,J) = _ + Re(Be ,

(3.39)

(3.4o)

!

a i(S+kx)X
• Lim S e dx

a ÷ _ o

fory 20

but

I

a i(S+kx)X
Lim f e dx = Lim

a+® o a÷®

I

--ei(S+kx)a

_i (s+k'x)- "

-I
i I

i (s+k'x)-_1

(3.41)

!

If Im(s+k X) = Im(c + iT- (kI

zero, one finds that

+ ik2) cos¢') =
_-k cos¢' is greater than

2

Lira

a ÷ _

|

i (S+kx)a
e

I

i(s+kx)

-0 for • > k cos¢'
(3.42)

and

|

v l_e-ikyy
^i+r (s,y) =
Ue+

!

ikyy i i+ Re(ae,¢')e s+k' x

for • > k cos¢'

(3.43)
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It follows that

T = k cos@'
- 2 (3.44)

^i+r, _
and Ue+ _s,y) is a regular function in the upper s-plane defined by

T > T .

^i+r. .
Taking the derivative of Ue+ {s,y) with respect to y, one gets

' ' k'

Tyy Ue+ (s,y) = _ - Ree s+k'

_ X

(3.45)

Evaluating (3.45) at y = 0 and substituting into Equation (3.30)• one

obtains that

kl

v y
+(s,y) = - _ S+kx (I - Re)

for y = O• T > T . (3.46)

If the following notation is used:

• (3.47)

Equation (3.46) becomes

k!

uSe -v y
_y +(s,0) = _ (s + kx) (i - Re)

for T > T . (3.48)

It is obvious from Equation (3.48) that _y Ue+(S,O ) is also regular in

the upper s-plane T > T_.
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S(x,y) is needed to account forAs stated above, the scattered field ue

the effects of the PECor PMCscreen lying on the the half-plane {x > 0,

s
y = 0}. This means that Ue+(X,O ) has to have the same asymptotic

i+r,
behavior as Ue+ ix,O) for x ÷ -, that is

s k2cos@'x T x
Lim Ue+(X,0) ~ c e = c e - o (3.49)
X ++_

A

It follows from Equations (A.4) and (A.7) that Ue+(S,O) is regular in

the upper s-plane defined by T > T_.

The next step in the analysis is to take the derivative of Equation

(3.37) with respect to y, and after setting y = 0, one finds that

a aU e_(S,O)
iB Ae(S) = _ uS+(s,0) + ay , T_ < T < T+ . (3.50)

Substituting Equations (3.29), (3.38) and (3.48) into (3.50), one

obtains

I

I I vkIReiB ueS+(s,O) + Ue-^S(s, : - _ "(S+kx)

As

-ik6eUe_(S,O),

T_<T<T+

or

k'(1-R e)-v Y

lS+kx)

A s A s
= iB Ue+(S,O) + Ue_(S,0) (iB + ik6 e) ,

TI < I < I +

(3.51)

(3.52)

At this point in the analysis, the regions of regularity of

^S a ^s

Ue+(S,O ) and _y Ue+(S,O) have been established. Furthermore, from the
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definition of B in Appendix C, it is easily determined that B is regular

in the strip defined by -k2 < T < k2. Thus, it remains to determine the

regions of regularity of us (s,O) which can be established by knowing

s (x,O) as x+-®. Note that besides thethe asymptotic behavior of Ue_

contribution to ueS(x,y) from the currents lying on the PEC or PMC

screen, there will be a contribution from the region {x = O, y = O}

where the impedance discontinuity occurs [6,10]. This contribution can

be interpreted as coming from an equivalent source [6,10] located at

{x = O, y = 0). It follows from Equation (B.4) that the asymptotic

behavior of us (x,O) due to this contribution will be
e-

-ikx ce-iklx ek2X

s( ceue x,O) ~ ixi (lz2 or 3/2) ixl (lx2 or 3/2) as x + -® . (3.53)

Therefore, T+ is equal to

T+ = Im (k) = k (3.54)
2

and uSe_(S,O) is regular in the lower half s-plane defined by T < T+.

Dividing (3.52) by iB, one gets

!

vi ky (1-Re)

(s+k.')B
x

'-k 5e+B'- I ^s: L,Ue(s'°),

T_< T< T+

(3.55)

Since T+ > __, all the functions of Equation (3.55) have a common

overlapping region of regularity. In a well-posed physical problem,

this is always the case [34]. Let Ge(s) and _e(s) be defined as

follows :
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B

Ge(s) _ kae+B (3.56)

(3.57)

where Ge(s) is regular in the strip -k < T < k which includes the strip
2 2

T_ < • <T+, and @e(s) is regular in the strip __ < T < T+. Substituting

(3.56) and (3.57) into Equation (3.55), and multiplying by Ge(s), one

obtains

A S
ce(s) Ge(s)= uSe_(S,O) + Ge(s) Ue+(S,0) , T_ < T < T+ (3.58)

which is known as the Wiener-Hopf equation. Figure (3.3) shows the

regions of regularity of all the functions in Equation (3.58). Note

^S

that there are two unknown functions in (3.58); namely, Ue+(S,0) and

u__(s,0). This equation can be solved using the Wiener-Hopf technique

which was invented around 1931 to solve a special type of integral

equation [32]. This technique was summarized in Section D.3 of

Chapter II. Comparing Equations (2.65) and (3.58) one concludes that

K(s) = _e(s) Ge(s) (3.59)

^S
F+(s)= Ue+(S,0)

^ A s

C_(s) = Ue_(S,O)

It is required that Ge(s) be free of zeros in the strip T
m

(3,60)

(3.61)

< T < T+. It

is obvious that Ge(s) in Equation (3.56) does not have zeros in the

6O



"rm$

o**(s), t

eC

co..x_._o,o.I / 0-,,.o,
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1-_-kzcosjb'

Re s

-k

A8
.o(S,o)

De(s)

D°_(s)

Figure 3.3. Regions of analyticity of functions in Equations (3.58)
and (3.131).
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strip __ < T< T+. The factorization of Ge(s) is possible if Ge(s)

satisfies certain conditions [32], which are satisfied by this

particular Ge(s). The functions G:(s) and Ge(s)_are obtained by

following the sameprocedure as Weinstein [37] and the details are shown

in Appendix D.

As mentioned in Section D.3, Chapter II, the functions De(s) and

De(s)_in this particular problem can be obtained by inspection. Recall

that

K(s)
- _e(s) G:(s) = De(s) + De(s) , T < T < T+ . (3.62)

Ge(s) - _
m

•_ ,5 o,,,,,,,,,,_,vv=,,u,^L _,,a_ u+ a,,uu__) af_ given, respectively, by

l

L;oe: livky(l-Re) -- I - Ge(s) (3.63)

and

l

ivky(1-Re) -- 1 1 , --

De(s) 2_ kSe(S+kx ) s) Ge(ikx )

Substituting (3.62) into (3.58) and using the results of (2.70) yields

De(s)
_S

(so) e s (s,0)G+(s) :- Ue+ ,

1

- De(s) : P(s)

Ge(s)
for all s

(3.65)

where P(s) is still an unknown entire function which can be expressed as

a polynomial in s.
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Solving for Ue+(S,0) and Ue.(S,0) in terms of P(s), one obtains

and

De(s) P(s)
= (3.66)

Ge(s)

*=u__(s,0)= Ge(s) [P(s) + De(s)] .

Since P(s) is an unknown, u_+(s,O) and u_.(s,0) are not unique

solutions. In other words, it is possible to obtain many solutions

which satisfy the scalar Helmholtz equation and all the boundary

conditions. In order to obtain a unique solution, the asymptotic

behavior of both sides of Equation (3.65) has to be determined for the

specific problem at hand.

It follows from Equation (3.56) that

Ge(s) ~ 1 as Isl + = for T < T < _+ .

(3.67)

(3.68)

It is shown in Appendix D that

Ge(s) ~ I as Isl + = for T > T_

and

(3.69)

Ge(s)_ ~ 1 as Isl + ® for T < T+ . (3.70)

e(s) and De(s) is easily determined fromThe asymptotic behavior of D+

Equations (3.63) and (3.64), that is

e -1D (s) _ s as Isl + = for T > __ (3.71)
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and

De(s) ~ s-1 as Isl + ® for T < T+ . (3.72)
B

In order to determine the asymptotic behavior of ^s (s,O) and u_+(s,O),U e _

the edge conditions given in Appendix B have to be used. Recall that

Ue(X,y ) represents the tangential electric field component Ez or the

tangential magnetic component Hz. It follows from Equation (B.5) that

(3.73)
uSe+(X,O)= O(Ixlp) as x ÷ O+

and

uS.(x,O) ~ O(Ixl p)
as x ÷ O- (3.74)

where p > O. Therefore, using Equations (A.12) through (A.15) yields

Ue+(S,O ) ~ s-p-I as Isl ÷ _ for 3 > 3.
(3.75)

Ue.(S,O) ~ s-p'I as Isl ÷ ® for 3 < 3+ . (3.76)

Substituting Equations (3.69) through (3.72), (3.75) and (3.76) into

(3.65), one gets

_s _ (3.77)
IDa(s) - Ue+(S,O) G_(s)I ~ Isl-p-I as Isl + ® for 3 > 3

lu__(s,O) /G_(s) - De(s)l_ ~ Isl-p-I as Isl ÷ ® for 3 < 3+ . (3.78)

Although the constant p is unknown, it is at least known that p > O.

Thus, it follows from (3.77) and (3.78) that
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P(s) ÷ 0 as Isl + ® . (3.79)

Finally, by an application of Liouville's theorem [32] which states that

a bounded entire function is a constant; i.e.,

P(s) = 0 for all s (3.80)

Thus, by applying the edge conditions, unique solutions have been

obtained. However, as shown in Chapter IV, this is not always true.

Sometimes additional information is needed in order to uniquely

determine the polynomial P(s).

Substituting (3.66) and (3.67) into (3.38) one obtains

m !

e(s) + Ge(s) De(s) for all s. (3.81)Ae(S ) = D_(s) G+ _ _

D_(s) and De(s)_are given in (3.63) and (3.64),Since the functions

respectively, Ae(S ) can be rewritten as

iVky(1-R e) Ge(s) I/G 1 1
Ae(S) = _ kae(S+kx)' :is) - Ge(-k:) (3.82)

1
+

e
Ge(s) G.(-k x)

I
and solving for _ in Equation (3.56) yields

-I

iGe s

IJ( )I
(3,83)
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Therefore, Ae(S) is given by

Ae(S ) =

I

ivky(1-R e) Ge(s)_

I m

(s+kx) B Ge(-kx )

(3.84)

Substituting (3.84) into (3.37) leads to

I

ivky(l-R e) Ge(s)
= , , e i BY

uSe(s'Y) _ (s+kx) B G_(_kx)e

for all s, and y ) O. (3.85)

The final step is to take the inverse Fourier transform of u_(s,y)

to obtain u_(x,y). Using Equations (A.IO) and (3.85) one gets

!

1 -+ia ivky (1-Re) Ge(s)_
s

Ue(X,Y) = _ I e
--+ia _ (s+kx) B G_(-k x)

eiBYe-iSxds

for T_ < a < T+

and y ) O, Ixl<-

(3.86)

where the path of integration is shown in Figure (3.4). Note that the

integration path lies entirely in the proper (top) sheet of the

s-plane (ImB>O) as required. When Im(k)+O, the medium becomes lossless,

and the new path of integration (a=O) is shown in Figure (3.5.).

kxFurthermore, notice that (x,y) has a pole s_ = in the lower

half-plane T < __ and a pole due to Ge(s)_ in the upper half-plane T>T+.

The contribution to the integral in (3.86) arising from these poles

is evaluated next.
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Figure 3.4. Integration path in Equations (3.86) and (3.152) for k2_ O.
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INTEGRATION I

PATH i

. k .L "°

•,:.o 1 i ..,
Ira.8 II 0 I

i PROPER RIEMANN SHEET :

Ira.8 > 0

Figure 3.5. Integration path in Equations (3.86) and (3.152) for

lossless case (k2=O).
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Assumethat the mediumis lossless, ioe., Im k=k2=O, and k=k1. It

follows from Equation (3.56) that the poles of Ge(s) satisfy the

equation

2 2 I12

(}= (k - s ) = -k6 e = - k (_er + iael) (3.87)
I

where k > O, and it will be shown that 6er > O. Since ImB > 0 on the
I

proper (top) Riemann sheet, the poles of Ge(s) will lie on this top

Riemann sheet if

Im 8e = 6el < 0 (3.88)

Otherwise, the poles of Ge(s) will lie on the improper (bottom)

n_ _1,.^^_- Tk-I. ^k.^--....I-'^. "_ ;----^-- _--.I- k^..,..^ .. ,..'11 k^ _1..^,.,_
I_/IE:_IIICLIIII :_llf_i_L,e III1=; UU:)t::l V(:ll_ lUll I TM IItlpUI J" I_ Uf_L. GU31_, (1:) WI I Ibait u_ ".ituwit

later, the poles of Ge(s) will give rise to the surface wave fields if

they lie on the proper (top) Riemann sheet.

Solving for s in (3.87) and assuming (3.88) is true, one obtains

2 1/2

se_ = k(1-6 e) (3.89)

e _k(1_6_) I/2 (3,90)S+ =

where s_ lies in the upper half s-plane T > _+, and it is the pole of

Ge(s)._ Similarly, s: lies in the lower half s-plane T < T_ and it is

the pole of G_(s). To show that the last two statements are true,

recall that

"'R + iXs for TEz Polarization, or
S

ae= i ~ ~ (3.91)

I._Gs + iBs for TMz Polarization
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Since {Rs, Gsl • 0 for a passive impedance sheet, and because it was

assumed that Im(_e) < O, 6e will lie in the fourth quadrant of the

s-plane, such that

ae laele i(_: , - _ < ¢ < 0 . (3.92)

Squaring (3.92) yields

2 12ae I ae ei 2¢= , - _ < ¢ < 0 (3.92)

and

2 2 iS

I - ae : II - ae I e , 0 < $ < _ . (3.93)

'l"&,,, ° _

I IIUI),

2 IZ2 2 I/2 i$12 $

(I - ae ) : 11 - ael e , 0 <_ < "_ . (3.95)

2 1/2
It follows from (3.95) that (1-_e) always lies in the first quadrant

of the s-plane when Im(6e) < O. Therefore, se_lies in the first

quadrant of the s-plane above the line • = _+ as shown in Figure 3.4.

e lies in the third quadrant of the s-plane below the lineThe pole s+

T = T_ and it is also depicted in Figure 3.4.

It is shown in Appendix D that in order to factorize Ge(s), it is

convenient to express ae as

_e : cos _e e {_) cos {r: cos({ r + i : e cosh{_- isin{ e sinh{_ ,

]'-R e)fl _o< e( .
(3.96)
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The restriction in the real part of {e is due to the fact that Re(6e)=

6er = {_s} is always greater than or equal to zero. Substituting

Gs

(3.96) into (3.89) and (3.90), se- and s_ can be written as

II

s e : ksin_ e , 0 < Re ({e) < _ (3,97)
m

II

s+e : _ksin{e , 0 < Re (_e) • _ (3,98)

where

e
Im(_e) = _I > 0 if Im(6e) = 6ei < 0 . (3.99)

Note that if Im(6e) > O, then the poles ofeG (s) will lie on the

improper (bottom) Riemann sheet such that

_e : _ksin_e ,
II

Im(_e) < O, 0 • Re({ e) • (3.100)

II

s_++ : ksin{ e , Im(_ e) < O, 0 • Re({ e) • _ (3,101)

where _ is the pole of Ge(s)_ and _++ is the pole of Ge(s) as depicted in

Figure 3,6,

2. Odd Problem

For the odd problem, the unperturbed field is

i
_o(X,y) = Uo(

I I I

x,y) + Uo(X,y) : ve __e + Ro(ao,¢ ,

(3,102)
y > O, Jxl<-
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i r R° and 6o referswhere v is a constant and the subscript "o" in uo, uo,

S(x,y) still satisfies theto the odd problem. The scattered field uo

scalar Helmholtz equation

il-B2 i)2 2_I-i S(x,Y) : 0 , Ixl<® y , 0 (3.103)_@-_-+ _-_'+ k uo

and the following boundary conditions:

and

__ + ik6 u (x,y) : 0

Uo (X,y)= ui(x,y) r(x,y)

for x < 0 , y = 0 (3.104)

for x > 0 , y = 0 . (3.105)

Using the half-range functions defined in Appendix A, (3.104) and

(3.105) can be rewritten as

I-_ 6 -1 s
I__" + ik 0_1 Uo-(X'Y): 0 for y : 0 , Ixl<= (3.106)

i+r(x,y)u_+(x,y) : -Uo+ for y : 0 , Ixl< . (3.107)

Taking the Fourier transform of Equations (3.103), (3.106) and

(3.107) with respect to x, one obtains

2--I'"S(s,y) : 0+ _ Uo

ol^SI__" + ik6 Uo_(S,y) : 0

^i+r,
uS+(s,y) =-Uo+ _s,y)

for y • 0 , T_ < • < T+

for y = 0 , _ < T+

for y = 0 , _ > T
i
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where B has been defined in Equation (3.32) and the constants T+ and T_

are unknownat this point. The most general solution of (3.108) is

u_(s,y) Ao(s)eiBY + Bo(s)e "i _ ^s ^s= = Uo+(S,y) + Uo_(S,y)

(3.111)

for y • 0 , T_ < T < T+ .

Since uoS(s,y) satisfies the radiation condition and Im(B) > 0 on the

proper Riemann sheet, e-iBy is not bounded as y ÷ ®. It follows that

Bo(S) _ 0 (3.112)

so that

and

uoS(s,y) = Uo+(S,y ) + Uo_(S,y) = Ao(s)e IBy

for y • 0 , T_ < T < T+

(3.113)

A ^

Ao(S) = Uo+(S,0) + Uo_(S,0) for T_ < T < T+ (3.114)

where Ao(s ) is analytic in the strip defined by T_ < T < T+.

Proceeding with the solution, the next step is to take the derivative

of (3.1137 with respect to y and then set y = 0 to arrive at

^s (s,y) + . 0 , _ < < . .i BAo(S ) = -_ Uo+ _ (s,y) , y = T T T+ (3 115)

Using (3.114) in (3.115) to eliminate Ao(S )
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Ilao_ _ __s(__iB +(s,0)+Uo_(s,o):w Uo_+(s,y)+w

y : 0, T_ < T < T+ .

(3.116)

Now, substituting the boundary conditions given in equations (3.109) and

(3.110) into (3.116), one gets

- ^i+r. ^s --I ^= ^'s

iB I-%+ is,o) + Uo_(S,O)_l= -ikao uZ_(s,O)o_- + Uo+(S,O)

T_ < T < T+

or, rewriting (3.117)

(3.117)

^'S
-i13 Uo+^i+r's,0)k = - i(B + kao) uS_(s,0) + Uo+(S,0 ) ,

T_ < T < T+

where

(3.118)

^i s a ^S
Uo+(S,O)

_Uo+(S,y)lyl : 0
(3.119)

i+r,
^i+r(s 0) it is enough to observe that uo _x,y)In order to compute Uo+ , ,

i+r. , ^i+r, s
has exactly the same form as ue Ix,y;o Therefore, Uo+ _ ,y) can be

obtained from Equation (3.43); i.e.,

I I

i+r vI iUo+ _s,y) =_ _e kyy + Roe , , T > T (3.120)
s+k x -

^i+r
where T_ has been defined in (3.44) and Uo+tS,y) is regular in the upper

half s-plane defined by T > T_.
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and

Next, the functions G°(s) and _°(s) are defined as follows:

1

G°(s) - (3.121)
B + kao

v i

-^i+r(s,O) : B (I + no) +kx= s (3.122)

Since B is regular in the strip -k2 < T < k2, and as shown later, G°(s)

is free of poles in the same strip, it follows that G°(s) is a regular

^i+r(s,O) is regular in
function in the strip -k2 < T < k2. Also, since Uo+

the upper half s-plane T > T_, _°(s) is regular in the strip

T < T < k . Furthermore, G°(s) is free of zeros in the strip
-- 2

-k2 < T < T2 as required (G°(s) does not have any finite zeros in the

s-plane). Substituting (3.121) and (3.122) into (3.118) yields

 °(sl (3.123)

which is the Wiener-Hopf equation. Note that _°(s) and G°(s) are known

functions, but there are two unknown functions; namely, u__(s,0) and

Uo_(S,O). In order to determine the constant _+, it is necessary to

know the asymptotic behavior of u__(x,O) and Uo_(X,O) and use Equations

(A.12) through (A.15).

Recall that u_(x,y) represents the electric field Ez, or the

magnetic field Hz. It follows from Maxwell's Equations (1.1) - (1.4)

is
that u° (x,y) is proportional to either Ex or Hx. Following the same

s 's
argument as in part 1, the asymptotic behavior of Uo_(x,O) and Uo+(x,O)

is
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and

-ikx -iklx ek2 x
ce ce

us (x,0)~
O- ixl (11z or 3/2) ixl (112 or 3/2)

as x + -® . (3.124)

!

's +ikxx -iklC°S@'X k2c°s@'x

Uo+(X,0) ~ c2 e = c2 e e (3.125)
, as X ÷ +_ •

s s (see Equation
Since Uo_(X,O) has the same asymptotic behavior as Ue_

(3.53)), T+ is given by (3.54).

As in the even problem, the next step is to factorize G°(s) into a

product of two functions such that

G°(S) = G°(S)_ G°(S) (3.126)

where G°(s) is regular in the upper half s-plane T > - Im(k) = -k2 and

G°(s) in the lower half s-plane T < Im(k) = k2. It is shown in

o
Appendix D how one obtains G+(s) and G°(s)._ Using (3.126) in (3.123)

and dividing by G°(s), which is possible since G°(s) is free of zeros

in the lower s-plane T < T+, one gets

uS_(s,O)
_|S

+ iG°(s) Uo+(S,O ) , "c < T < _+ .
sO(s) G°(S) - GO(s)

(3.127)

The left hand side of Equation (3.127) is similar to the left hand

side of Equation (3.58) in the even problem. Thus, _°(s) G_(s) can be

decomposed into a sum of two functions such that
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¢°(s) G°(s) = DO(s) + D°(s)_ (3.128)

where D_(s) is regular in the upper half s-plane T > T_ and D°(s)_ is

regular in the lower half s-plane _ < T+. As in part 1, this

decomposition can be done by inspection. The details are given in

Appendix E and only the final expressions for D_(s) and D°(s)_ are shown

here:

vi (I+R o) i

D°(s) _ (s+kx) °(-k x)
m --

vi(l+R )

_ : , - - " . (3.130)
D°(s) _ (S+kx) _ o()_ GO(_kx )_

Substituting (3.129) and (3.130) into (3.127), one obtains

^I s

D°(S) - iGO(s)Uo+(S,0) -

uSo_(S,O)

G°(s)
- D°(s)_ , T_ < T < T+ (3.131)

where the regions of regularity in the s-plane of all the functions in

Equations (3.131) are depicted in Figure 3.3.

The right hand side of Equation (3.131) is regular in the lower

half s-plane T < T+, and the left hand side is regular in the upper half

s-plane T > T_, so both sides have a common region of regularity. By

analytic continuation, both sides of Equation (3.131) are equal to an

entire function B(s) which is yet to be determined. Thus,
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O(S ^iSD_(S) - iG+ )Uo+ (s,0) -

^s
Uo_(S,0)

- D°(s)= B(s) ,
i

G°(s) (3.132)
for all s .

As stated in Section D.3 of Chapter II, B(s) is a polynomial in s such

that

B(s) = ao + a s + a s2 + ... + ansn (3,133)
i 2

where the unknown coefficients {ai} can be determined by examining the

asymptotic behavior of the functions of Equation (3.132).

It follows from (3.121) that

G°(s) ~ s-1 as Isl + _ for Ti < • < T+

and from the expressions of G°(s)_ and G_(s) given in Appendix D, one

concludes that

(3.134)

_1/2
G°(s)_- ~ s as Isl + ® for T < T+ (3.135)

and

_1/2G (s) ~ s as Isl÷ ® for T > __ . (3.136)

The asymptotic behavior of D_(s) and D°(s)_ is easily obtained from

(3.129) and (3,130), that is

_( _ID s) ~ s as Isl÷ " for T > __ (3.137)

and

_1/2
D°(S)_ ~ S as Isl÷ - for T < T+ (3,138)
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^i S
In order to determine the asymptotic behavior of u__(s,O) and Uo+(S,O )

it is necessary to apply the edge conditions given in Appendix B.

s
Recall that Uo(X,y ) is either equal to Ez (perfect electric conductor

for x > O, y = O) or Hz (perfect magnetic conductor for x > O, y = 0).

Also, as stated before, it follows from Maxwell's equations that
!

s
u o (x,y) is then proportional to either Hx or Ex. Using Equations (B.5)

and (B.6), one obtains

uSo_(X,O)= O(lxlp) as x ÷ O- (3.139)

_ I 'S(x,O) : O(Ixlp-l) as x ÷ O+B--_u +(x,y) : Uo+
y=O

where

p > 0

_S ^_S
It follows that the asymptotic behavior of Uo_ and Uo+ is:

u__(s,O)~ s-p-1 as Isl÷ " • T < T+

(3.140)

(3.141)

(3.142)

uS+(s,O) ~ s-p as Isl+ ® , • > T_ . (3.143)

Since p>O, it is easily verified from above that B(s)÷O as IsI + ®, and

then by the application of Liouville's theorem [32], B(s) is uniquely

^l S

determined as B(s) = 0 for all s. Therefore, Uo_(S,O) and Uo+ (s,O)

can be solved simultaneously from Equation (3.132) such that

__(s,o) : D°(s)_G°(s) for all s (3.144)
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-iDa(s)

^'s s,O) = for all s

u°+( G_(s)

(3.145)

Substituting (3.129) and (3.130) into (3.144) and (3.145) yields

iv(l+Ro) -- 1 1

^s (s,O) : ' G°(s) _ k'u°- _ (S+kxt - (st GO( - xt

(3.146)

v(l+R°) -- 1' _Is = _ kaoG°(s)
Uo+(S ,0) , O(-kx(S+kxt _- ) G°(st

(3.147)

^i+r(s,y) is known and it is given in (3.120), it follows fromSince Uo+

(3.110) that

^S

Uo+(S,O)=

-iv (!+R)
0

!

(s+k)
X

(3.148)

Furthermore, substituting (3.146) and (3.148) into (3.114), the

expression for Ao(S) becomes

Ao(S ) =

-iv (l+Ro) iv (l+Ro) - 1 1

!I' + ' G°(st k'
(s+k) _ (S+kx) - o s) Go( - xt

for all s

which can be simplified to

-iv (l+Ro) G°(s)_

! 0

Ao(S) = V_-_ (S+kx) G°(-kx)_

for all s .

(3.149t

(3.150)
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AS(s,y) can be obtained from (3.150) and (3.113)asTherefore, uo

-iv (l+Ro) G°(s)
I

uS(s'Y) = V'_"_ (S+kx)G°(-kx)eiBY
for y ) O, and all s . (3.151)

Finally, the last step in this analysis is to take the inverse Fourier

transform of (s,y) to obtain Uo(X,y)o It follows from Equation (A.IO)

i -+ib -iv (l+Ro) G°(s)_

UoS(X,y)= J , , eiSye-iSxds
-'+ib _ (s+kx) G°(-kx )

that

for y ) O, Ixl<®,

_ <b<T+

(3.152)

where the path of integration, as depicted in Figure 3.4, lies entirely

on the proper (top) Riemann sheet where ImB > O. When Im(k)=k2÷O , the

medium becomes lossless and the new path of integration (b=O) is shown

-kxin Figure 3.5. Note that (s,y) has a pole s_ = in the lower half

s-plane T < T_ of the top and bottom Riemann sheets, and a pole due to

G°(s)_ in the upper half s-plane T > _+ which is evaluated next.

In order to evaluate the poles of G°(s), note that the denumerator

of G°(s) is the same as the denumerator of Ge(s). Thus, the poles

obtained in the even problem are the same for the odd problem. In other

words, the poles of G°(s) will lie on the proper (top) Riemann sheet if

Im(6o) = Im [6or + i6oi ] = 6oi < 0 (3.153)
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Otherwise, the poles of G°(s) will lie on the improper (bottom) Riemann

sheet and will not contribute to the scattered fields as shown in

Section C. Using the results of part 1, and assuming Im (6o) < 0, the

poles of G°(s) are

and

O 2 I/2

s_ = k(1-a o) (3.154)

O 2 I12
s+ = -k(l-_ o) (3.155)

where s°_lies in the upper half s-plane T > T+ and it is the pole of

o lies in the lower half s-plane T < z and it isG°(s)._ Similarly, s+

o

the pole of G_(s). The poles so_ and s+ are depicted in Figure 3.5. As

as in the even case, in order to factorize G°(s), it is convenient to

express ao as

ao cos{° : cos( o {_) o o o o= {r+i = c°S{rC°Sh{I - isin{r slnh{I

1 oi0 < e({ °) : { < "_
(3.156)

Substituting (3.156) into (3.154) and (3.155), so and s_ become

o } ols_ = ksin{ ° , 0 < e(_ °) : _ <

s+° = _ksin{O I oI0 < e({°) : { <

0

where Ira({ °) = {I > 0 because Im(ao) = aol < O.

(3.157)

(3.158)
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When Im(a o) > O, the poles of G°(s) will lie on the improper

(bottom) Riemann sheet. In this case, s_°_ and s_°+are given by

IT

s°_ : -ksin_ ° , Im({ °) < O, 0 < Re(_°)< _ (3.159)

II

= ksin{ ° , Im({ °) < O, 0 < Re({°)< _ (3.160)

°(s) as shown inwhere _ is the pole of G°(s)_ and _o+ is the pole of G+

Figure 3.6.

C. ASYMPTOTIC ANALYSIS

The solutions of the even and odd problem given in Equations (3.86)

and (3.152), respectively, are expressed in terms of an integral which,

except for very simple cases, cannot be computed in closed form.

Fortunately, in diffraction problems one is interested in the far field

solutions which can be obtained by applying asymptotic integration

techniques to (3.86) and (3.152). Here, the saddle point method [38]

S S

will be used to obtain the leading terms of Ue(X,y ) and Uo(X,y) for

Iarge k x2_/xT_'2+y2 .

1. Angular Spectral Mapping

It is common practice to introduce a change of variables via the

transformations
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s = _ + iT = -kcosw = -kcos(_ + iy) (3.161)

B = Ck2 - s2 = ksinw = ksin(m + iy) (3.162)

where k = kI (k2 = O, lossless medium) is real. The above

transformation is a mapping from the s-domain to the w-domain, which is

conventionally referred to as the angular spectral domain. All the

details of the mapping from the s-domain to the w-domain are given in

Appendix F. The former two-sheeted plane of B(s) becomes the periodic

plane depicted in Figure 3.7 with the role of the branch cuts replaced

by lines which are their images. It is obvious that the effect of this

transformation is to open up the function B(s) and thus remove the

branch points and branch cuts associated with B.

It is also convenient to make a change of variables from the

rectangular to polar coordinate system via the transformation

x = pcos@ ; y = psin@ (3.163)

where the quantities p and ¢ are shown in Figure 3.8.

2. Even Problem

Substituting Equations (3.161), (3.162) and (3.163) into (3.86),

one obtains

v(1-Re)sin @' Ge(-kcosw)_ eikpc°s(w-@)dw
s J

Ue(P'@) = 2_i e , ,
rw (cosw + cos@') Ge(kcos¢_ )

(3.164)

0 < (_,_') <
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Figure 3.7. The angular spectral w-plane.
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where re is the new integration path in the w-domain as shownin Figure
W

!

3.9. The pole s e = -k x = kcos¢' on the proper (top) Riemann sheet inP

the s-domain is mapped to

W e+ = _ - @ (3.165)
r

in the w-domain, and the same pole on the improper (bottom) sheet in the

s-domain is mapped to

we-
r = _ + _ (3.166)

Y

Figure 3.8. Polar coordinates.
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in the w-domain. The pole of Ge(s) at se : ksin{ e, which is located in

the first quadrant of the s-plane if Im(ae) < 0 (Im({ e) > 0), is mapped

to

we 3_ _e e i_ , 0 < Re(_ e) < _ (3.167)s = -

in the w-plane. Note that if Im (Be) > O, then se_= -ksin{ e will lie in

the second quadrant of the bottom Riemann sheet and its image in the

w-plane is

: {e)e _e _ e _ e 0 < Re( < _ , Im(_ e) < 0 (3.168)Ws - _ = {r - _ + i{l '

S(p,¢) is to deform theThe next step in the asymptotic analysis of ue

_=_=,,_ path thruuyfh the

saddle point.

First, it is convenient to define the functions f(w) and Me(W ) such

that

f(w) : icos(¢-w) : fr(m,y) + ifI(m,y ) (3.169)

v(1-R e) sine' Ge(-kcosw)

Me(W) = (3.170)
2xi (cosw + cos¢') Ge(+kcos¢')

where

fr(_,y) = -sin(¢-_)sinhy = sin(_-_)sinhy (3.171)

fi(m,y) : cos(¢-m)coshy (3.172)

The saddle point, denoted by ws = ms + iYs , is a point in the

w-plane at which the derivative of f(w) vanishes [38], that is
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d

f'(Ws) = _ f(W)lw s
=0 . (3.173)

Next, taking the derivative of f(w) and setting equal to zero yields

d

f'(w s) =_ icos(a-W) lws
= isin(a-Ws) = 0 (3.174)

3_
Since the real part of w is restricted to the interval -_ < Re(w) <--_,

it follows that

ws : @, or as = ¢ and Ys = O, O< ¢ < _ . (3.175)

The steepest descent path (SDP), where (mp, yp) is a point on this

curve, is given by

fl(_p,yp) : fl(as,Ys) ; fr(:p,Yp ) < fr(ms,Ys) •
(3.176)

In specifying the contour of integration CSD P along SDP, it is important

to include the direction of integration as shown in Figure 3.9. From

Equations (3.175) and (3.176), the path of integration CSD P is

determined by

and

cos(¢-mp) coshyp = 1 (3.177)

sin(mp-¢) sinhyp < 0

Also, the angle Cs depicted in Figure 3.9 has to be computed.

accomplished [38] by twice differentiating (3.177) and evaluating the

result at the saddle point. Without going over the details, one gets

(3.178)

This is
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Y ap = as = cos (¢-ap)coshyp I
Wp = as+iY s

= 1 (3.179)

From Figure 3.9, it is obvious that

i-°y = -1

_ p ap = as

(3.180)

which means that

-W

¢s = I (3.181)

Substituting (3.169) and (3.170) into (3.164), the expression for

,.S! ,_ L ......

Ue_ p,_) ue_u1,,e_

uSe(p,@) : J Me(W) ekPf(w)dw , 0 < @ <

r e
W

(3.182)

where Me(W ) has poles at w;+° , w_-and w_ as shown in Figure 3.9. After

e s
the deformation of rw to the CSDP, the field Ue(P,@) is represented via

Cauchy's residue theorem, as the sum of the residues arising from the

pole singularities captured during this deformation and the integral

along the CSD P. Note that the steepest descent path CSDP, depending on

the angle @, may run anywhere between the path SDP- crossing the real

axis at a=O to SDP+ which crosses the real axis at a=x.

The paths SDP- and SDP+ are depicted in Figure 3.10. Any pole

located in the shaded area shown in Figure 3.10 will be captured as the

path CSD P runs between SDP- and SDP+. Applying Cauchy's residue theorem

in Equation (3.182) yields:
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Figure 3.9. Integration paths I_w and CSD P in the periodic w-plane for

k=k I (real).
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u_(p,¢) = 2_i

IRes IMe(we)ekPf(we)_I U(¢- _ss)

- Res Me(we+) e u(we+ I

I

+ _ Me(W) ekpf(w) dw , 0 < ¢ <

CSDP

(3.183)

ewhere ¢s is computed later and U(@ - ), U(w +- @) are the usual unit

step functions. The various types of waves that contribute to the field

s(p,@) are those arising from the following poles and saddle point of
U e

the integrand in (3.182); namely from:

(i) The pole we+r which is the zero of (cosw + cos@'). It

contributes to the geometrical optics field when it is

captured. This pole is captured when 0<@<7-@'.

(ii) The pole w_ which is the zero of Ge(s)._ It

contributes to the surface wave field excited at the

edge (x=0,y=0) by the incident plane wave. This pole

may be captured only if Im(ae) < 0.

(iii) CSD P integral contribution. This contribution is always

present and when kp ÷ -, it is asymptotic to a term

containing the value of the integrand M(w)e kpf(w) at the

saddle point w=w s. It us usually known as the diffracted

field.
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The location of the poles in the w-plane determines the type of guided

waves they will contribute. Figure 3.11 illustrates the different types

of waves corresponding to poles located in the various regions of the

w-plane [39]. This diagram was obtained by examining the exponential

ekPf(w) ÷ ÷
function in Equation (3.182). The vectors _p and _a are the

propagation and attenuation vectors, respectively, and they will be

defined more carefully in section F. It is sufficient to mention at
÷ ÷

this point that the waves propagate in the direction of _p, and _a is
÷

the direction of most rapid attenuation. As shown in section F, _p and
÷

_a are always orthogonal to each other. Note that the proper surface

_._ J .... _ .............

waves are located in quadrants i a,u ill; the improper _uf_ace wave_ ar_

located in quadrants VI and VIII; and the leaky waves in quadrants V and

VII. It can be shown that the magnitude of the propagation vector is
+

l_pS=kcoshw I where Wl is the imaginary part of the pole w. This states

that for a pole with nonzero imaginary part, the wave that it

contributes will always be a slow wave in the direction of propagation.

÷

However, the projection of _p on the x-direction may correspond to
÷

either a fast or slow wave [39]. That is, 1_p.Xl=l_pxl=kcoswrcoshwI<l ,

where Wr is the real part of the pole w. Figure 3.12 illustrates the

regions where the waves are either fast or slow. Poles corresponding to

slow waves are located in the clear region, while those corresponding to

fast waves are found in the shaded regions of the strip -_/2<_<3_/2.
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Different wave types as a function of pole location in

the periodic w-plane.
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First, the residue at we+ in (3.183) will be computed that isr

I--M kPf(*e+)--]Res e(W e+) e = lim (w-we+)Me(w)e kpf(w)

_ _ w+we+
r

(3.184)

Substituting Equations (3.169) and (3.170) into (3.184) yields

--M kPf(we+)--I v(1Re)Res e(W e+) e = 2_i
e-ikpcos (_+¢') (3.185)

e it is necessary to write theIn order to compute the residue at w = Ws,

expressions for Ge(-kcosw)._ Using the results given in Appendix D and

Equations (3.162) and (3.96) yields

Ge(-kcosw) =
ksinw

ksinw + kcos{e

sinw

sinw + cos{ e ' 0 _ Re({ e) < _ (3.186)

i_ _os_I
G+(-kcosw) = i sin_e_cos w I

17_+_o_wI
Ge(-kc°sw)=Isin{e+c°swI

e
1/2 _ -w+{

-1 gexp _2_ J

_ e
3_ -w-{

t dt--Isint
(3.187)

112 it'

I-I w-_+_e t dt-I
exp -_T J sint . (3.188)

__e-- W+ "_"

Evaluating Equation (3.188) at w = w_+, one obtains

e _ sin(¢'/2)

Ge(-kc°sw_+)=G-(kc°s¢')=- e

(sin_ -cos¢')

I-__Ie -I
1/:, exp I 2_ Jl(¢') I

I_ _1
(3.189)
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where

_@,+_e t
e ¢, . ,Jl( ) = _ _ dt (3 190)

3_ _e-_'-

It is convenient to express Ge(-kcosw) in terms of Ge(-kcosw) and
m

e
G+e(-kcosw). This can be accomplished by solving for G_(-kcosw)', i.e.,

Ge(-kcosw)

_ : . (3.191)
Ge(-kc°sw) G_(-kcosw)

Thus, M (w) can be rewritten as
e

M (w):
e

v(1-Re)sin ¢' sinw

2_i(cosw + cos@') (sinw + cos_ e) Ge(kcos@') G_(-kcosw)

(3.192)

Substituting Equations (3.187) and (3.189) into (3.192) and using

trigonometric identities, the expression for Me(W) becomes

v 11Rel
Me(w)=T_Tl__2--J

112
[(sin_e-cosw) (sin_e-cos@ ')]

sinw + cos_ e

I J_(w)]__'_ [J_(@') +

e

(3.193)
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that

Now, the residue at w_ :_- Ee, Im (Ee) > 0 can be computed such

:_Lime (w-w_) Me(W) ekpf(w) . (3.194)

W÷W S

Substituting (3.193) into (3.194), one obtains

- e kPf(we)-I -vRes Me(Ws)e = T_T

cos {e

sin@'+cos{ e

• l-sec [(we-(_')/2)+ sec [(we+(_')/2)- I e-ikpsin(@+{ e)

ID ml

ee ile e• exp I -_ [J (¢) + Jl(Ws ) ' {I > 0 , 0 < _r < _ " (3.195)

The final step is the asymptotic evaluation of the integral along

the path CSD P, Before the diffracted field is computed, it is important

to examine the exponential behavior of the various contributors to the

field u_(p,¢). A plot of the zero exponential decay contours is shown

in Figure (3.13). It is seen that these contours divide the w-plane

into two regions: one in which the exponential decay is greater than

that at the saddle point, and the other region in which there is

exponential growth which represents non-physical fields.

Since the pole we+ lies in the Re (w) = m axis it has the same
r

exponential decay as the saddle point, namely, zero exponential decay.

On the other hand, the exponential decay of the surface wave field is
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greater than that at the saddle point as shownin Figure 3.13. There is

one special case whenthe surface wave field will have zero exponential
e

decay: whenRe (ae) = aer = 0 ({r = _-' lossless impedancewall) and

e will lie on a zero decay contour.¢ = _. In this case, the pole ws

In order to perform a uniform asymptotic evaluation of the steepest

descent integral, it is necessary to assume that IIm ael is large enough

e is never close to the saddle pointso that the surface wave pole ws

ws = @ or the poles we+r and we-r" All the details of the saddle point

analysis are shown in Appendix G and note that the largeness parameter

is kp. Thus, for large kp, the resulting expression is given by

vei elI Me(W)e kpf(w)dw = u_(p,@) ~ _ _ --
CSDP

i12

[(sin_e-cos¢ ') (sin_e-cos@)]

sine + cos_ e

e
expC-[J_(@') + J1(@)]/(2_))

• _ec ((¢+¢')/2) F (kLa +) + sec ((@-¢')/2) F (kLa-)

eikp

(3.196)

where F(x), which is referred to as the transition function [11], is

defined as follows:

F(x) 2i/_ eix f e-it2= dt

V_
(3.197)
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SADDLE POINT

------- ZERO DECAY CONTOURS

REGION WITH GREATER EXPONENTIAL DECAY
THAN AT THE SADDLE POINT

F7 REGION WITH EXPONENTIAL GROWTH

NON- PHYSICAL

Figure 3.13, Demarcation of regions of w-plane about the saddle point
characterizing the rate of exponential growth or decay of
waves associated with the pole locations,
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and
+ e+ e+ 2

a- =-i[f(¢) - f(Wr-)] = -i [i-icos (¢-w r )] = 2cos

Furthermore, for the case of plane wave incidence: L=p, and the field

d
Ue(P,@) defined in Equation (3.196) is commonly referred to as the

diffracted field.

s
The expression for the scattered field Ue(P,@) is obtained by

substituting equations (3.185), (3.195) and (3.196) into (3.183). Thus,

for large kp

u_(p,@) ~ v(l-Re)e-ikpc°s(@+_')U(_-@-@') + u_W(p,@) + u_(p,@) ,

0 < (@,@') < _ (3.199)

where uSeW(p,¢) is the surface wave field which is excited only if

SW

Im (ae)<O (Im({e)>o). The expression for ue (p,@) is given by

SW

ue (p,¢): 2(sin{e-c°s¢' )--I
sin{ e

112

• l-sec [(we-@')/2)+ sec [(we+¢')/2)-- I

• exp )--1_ [j_(wse)+ J_(@')_l exp l_-ik(xsin{e + ycos_e)_l U(¢-@ e)

0 < (¢, @'), < _ (3.200)
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_ss _ e = O, thewhere is computed next. Note that if { < 0 or Re({ e) = {r

e e
pole we is not captured. Thus assuming 0 < _r < _/2 and _I > O, its

follows from (3.177) and (3.178) that

_e e e e _)sinhE_ < 0-sin(¢s+Er)COshE I = I ; coS(Er+¢ s (3.201)

Therefore, one concludes from (3.201) that

_ss e 3_< + _r <-_ "

Then, solving for _ss from (3.201) yields

(3.202)

e
_s :_-{r + arcsin , 0 < {r < "_" ' { > 0 . (3.203)

n h:"

i___...._I_I

e will beSince ¢ is restricted to the interval 0 < @ < i;,the pole ws

captured only if

{e > arcs in l_co;h{_ , {_ > 0 .

Finally, the expression for the total field Ue(P,_) is obtained by

substituting Equations (3.18) and (3.199) into (3.21) such that

i r sw dUe(P,@ ) ~ Ue(P,_ ) + Ue(P,@ ) + ue (p,@) + u_(p,@) ,

0<¢<_

(3.204)

(3.205)

i
where Ue(P,¢) is the incident field defined in Equation (3.16) and

ur(p,¢) is the reflected field given by

ur({,¢) : VAe(¢' ) e -ikpc°s(¢+@') , 0 < (¢,0') < (3.206)
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where

Ae(@, ) = l_IRe (¢') for ¢+for ¢ + ¢' < _I¢' > " (3.207)

Before the odd problem is solved, it is convenient to write the

diffracted field in standard form [11]. Let QE be the diffraction point

at the edge which in this case is the origin (x=O, y=O). It follows

from [II] that the diffracted field ude(p,@) can be expressed as

fol 1ows :

ikp
e

Ue(P,¢): ¢,¢'
(3.208)

where

Uie(OE) = ui(O,O) = v
(3,209)

Substituting (3.196) into (3.208) yields

i_14

-e L - e-IDde(¢,,') = _ -- _--

[ (sin{e-cos¢)(sin{e-cos¢ ') ]

sin@ + cos_ e

112

• e-1/(2x)[J_(¢)+J_ (_')) I--sec(B+/2)F*(kLa+)+ sec(B-/2)F*(kLa-)il,

0 < (¢, @') < _ (3.210)

where Dde(¢,@') is the even UTD diffraction coefficient, and

+

B-:¢+-_ ' . (3.211)
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Note that the transition function F in (3.210) makes the

diffraction coefficient De uniform such that the diffracted field of
e

(3.208) exactly compensates the discontinuity of the reflected field in

(3.206) across the reflection shadow boundary. Consequently, the total

high frequency UTD field as given in (3.205) is continuous everywhere

away from the diffracting edge as long as the surface wave field is

insignificant away from the impedance wall.

3. Odd Problem.

Exactly the same procedure as in the even problem is followed to

obtain the uniform asymptotic solution for the odd problem. Thus, the

w-plane. Substituting Equations (3.161)-(3.163) into (3.152) yields

-v(I+R o) G°(-kcosw). sinw eikpc°s(w-¢)

s(p,¢)_ j dw ,
Uo 2xi (COS¢'+cosw) G°(kcos¢ ')

i_o

w 0<¢<_

(3.212)

o is shown in Figure 3.9. The steepestwhere the path of integration rw

descent path CSD P and the angle Cs are the same as in the even problem.

That is, @s = -_/4 and CSD P is depicted in Figure 3.9. The pole
I

o = _kx = kcos¢' of the integrand in Equation (3.152) on the topSp

Riemann sheet of the s-domain is mapped to

w°+ = _-¢' (3.213)
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in the w-plane, and the same pole on the bottom Riemann sheet is mapped

to

w°- : _ + ¢' (3.214)
r

in the w-plane. Furthermore, the pole of G°(s) at so = ksin_ °
m

(Im(ao) < O) is mapped to

= _ = - e eIW s

IT

, 0 < Re ({o) < _ (3.215)

On the other hand, if Im(ao)
0

> O, the image of the pole s
m

= ksin{ ° in

the w-plane is

W 0 : _0 _ 0 _ 0
s " _ = {r - -_ + i_'I ' 0 < Re({°) <-_ , Im_° < 0 .(3.216)

Next, it is convenient to define the function Mo(W) such that

-v(l+R o) G°(-kcosw)_ sinw

Z m

M°(w) 2_i (cos¢'+cosw) G°(kcos¢ ')
(3.217)

Substituting Equations (3.169) and (3.217) into (3.212), one obtains

s kpf(w)
Uo(P,_) = f Mo(W) e dw , 0 < ¢ < _ . (3.218)

ro
W

Note that Equations (3.182) and (3.218) are similar. Thus, the results

obtained in Section 2 can be used here. It follows from Equation

(3.183) that
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I" kofwoUs°(p,¢) = 2_i es o(Ws)e _I U(_-_ss)

11IM°(W°+lkpf(Wr°+)--I-Res I_ r ) e U(W°r+-¢) + J_ CSDP

Mo(W) ekpf(w) dw

(3.219)

where _ss is unknown at this point•

o and w°+
The residues at ws r are computed in the same way as in

Section 2. The residue at w°+ is
r

,.__,..o+__. v(l+R^)

I.°r_ I °Res o(W +) e _Wr = 2_i
-ikpcos(¢+¢')

e . (3.220)

Using the results of Appendix D, the functions G°(s), G°(s)_ and G_(s)

can be expressed in the w-domain as follows:

1

G°(-kcosw) = 0 < Re(E °) < _ (3.221)
k(sinw+cos_O) '

G°(-kcosw) =
(sin E°-cosw)

I/2 _12-w+{ °

1 Iexp _ I sin--t-

3_/2-w-{ °

(3.222)

ookcoswsin°cosw {
1/2 w-_12+_ °

I Iexp _ J sint dt-

-- w+_12__ 0 (3,223)
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Evaluating G°(-kcosw) at w°+- r ' one obtains

i ' i_ . (sin{O_cos¢)

_/2-@'+{ °

II-1 sintt i
• exp i_ J dt-

3_/2-@' _{o

112

(3.224)

o
The function G°_(-kcosw) can be expressed in terms of G+(-kcosw) and

G°(kcosw) such that
w

1/2

G°(-kcosw) [k(sin{°-cosw)) -1/(2_)J_(w)
G°(-kcosw) = = e

G°(-kcosw) k(sinw+cos{ °)
(3.225)

where

_/2-w+_ °

t

O_(w) : I sin--Tdt

3_/2-Ww_ °

(3.226)

Consequently, Mo(W) can be written as

Mo(S)=

1/2

v(l+RolCOs(w/2)[sin{°-cosw)(sin_°-c°s¢'] _l[j_(w)+j_(¢'))
e

2_i (sinw+cos_ °) 2sin(¢'/2)

(3.227)

where the following trigonometric identity has been used in (3.227):
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-4sin(w/2) sin(¢'/2)
cosw + cos_'

= sec [(w-¢')/2)-sec ((w-¢')/2) (3.228)

3_ _o {where it isNow it is possible to compute the residue at w_ = _-

assumed that Im(E°) > O) such that

1/2

Res o_Ws)e = 2_i sinEO

• [ sec ((W°s-,')/2)-sec ((Ws°+¢')/2)]

cos(w 12)

r.l n ,1, i I.,..A_,. -0

QI I II VIIt IbUaF_.l

-ikpsin(¢+_o )
• e I:A rl

IT

0 < Re(E°) < (3.229)

where the following equality has been employed:

I+Ro sine' 2sin(@'2) cos(¢'/2)

2
sin@' + _o sin¢' + cos_ °

(3.230)

S

In order to complete the solution of Uo(P,¢), it is necessary to

evaluate the integral over CSDP asymptotically using the saddle point

method. As in Section 2, assume, that IIm aol is large enough so that

o-
o is not close to the saddle point or the poles w_+ and wr •the pole ws
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Therefore, for large kp (see Appendix G), one obtains

d
f Mo(w)ekPf(w)dw : Uo(P,@ ) ~

CSDP

I iI• exp (J_(@) + J_(@')) •

_ve i_'f4 i __Ro_I cos (@f2)

--2 -- sin(@'/2)

[(sin_O_cos@)(sin_O_cos@ ,)]I/2

sin@ + cos_ °

• }--sec ((@-@')/2)F*(kLa-)- sec ((@+@')/2)F*(kLa+) -} eikp ,
_ _ v_p

O< (@, @') <
(3.231)

+

where the functions F(x) and a- were defined in Equations (3.197) and

d(p,@) is the diffracted(3.198), respectively. Furthermore, the field uo

field and L, as in the even problem, is equal to p for the case of plane

wave incidence.

The expression for uS(p,@) is obtained by substituting equations
o

(3.220), (3.229) and (3.231) into (3.219). Thus, for large kp

S ' SW d
Uo(P,¢) ~-v(l+Ro)e -ikpc°s(@+@ )U(_-¢-@') + uo (p,@) + Uo(P,@) ,

0 < (@, @') < (3.232)

where uSWf
o "P'@) is the surface wave field excited by the incident plane

wave when Im(_o) < 0 (Im(_°)>O). uoSW(p,@) is given by

108



uSW, •
o ix,y) :

-v2cos(¢'12)cos(w_12)

sin@' + cos{°

112

-I

Isec,w°,12,sec12',I
I

-ik(xsin{°+ycos {o)

• e u(¢-_)

-_i(2,)(J?(,'_+J?(w°_)
e

y ) 0 (3.233)

where

o ol_ss : _ {r + arcsinI

_° h _i_

(3.234)

As in the even case, ¢ is restricted to the interval 0 < ¢ < _. It

o
follows that the pole ws will be captured only if

_r > arcsin
h{

0
, _i>0 • (3.2357

Recall that the total field Uo(P,¢) is given by

$
Uo(P,,) : Uio(p,¢) + _or(p,@) + Uo(P,@) , 0 < (@, ##') < . (3.236)

Substituting (3.232) into (3.236) yields

i r sw d
Uo(p,_)= Uo(p,_)+ Uo(p,_)+ uo (p,¢) + Uo(p,_) ,

0 < (¢, ¢') < (3.237)

• r

where Ulo(p,@) is the incident field given by Equation (3.16) and Uo(P,¢ )

is the reflected field which can be written as
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-ikpcos(@+¢')Uo
r(p,,) : VAo(,')e

where

^o(*): I-i *+*_Ro(*)'*+*>"I

(3.238)

(3.239)

Finally, as in Section 2, the diffracted field can be expressed as

follows:

d ,.udo(p,*) = u_(QE) Do(@, )

ikp
e

_p
(3.240)

where

i i
Uo(QE) = uo (0,0) = v (3.241)

and substituting (3.231) into (3.240) yields

i _/4 -I+R °

Do(*,*') - ,r_

-I/(2_)[J_(,)+J_(,')]
• e

cos(,/2) [(sin_°-cos,)(sin{°-cos,')] I/2

sin(,'12)
sin, + cos_ °

[sec(B'/2)F*(kLa-)- sec(B+/2)F*(kLa+)] ,

0 < (@, ,') < (3.242)

which is the odd UTD diffraction coefficient. The diffraction

coefficients Dd and d
e Do will be referred to as the two-dimensional

coefficients to differentiate them from the diffraction coefficients

that will be obtained in Chapter IV for the more general case of oblique

Again, Ddo in (3.242) makes u_ uniformly valid across the RSBincidence.
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o becomes discontinuous such that the total high frequency UTD
where ur

field in (3.237) is continuous there (assuming usw is insignificant away
o

from the impedance wall).

D. EVALUATION OF THE DIFFRACTED FIELD ON THE IMPEDANCE SURFACE

The asymptotic solutions presented in Equations (3.196) and (3,231)

I/2
include terms up to the order k- with respect to the incident field,

It is easy to show that both even and odd diffracted fields to order

_I12
k vanish when the observation point is on the impedance surface,

i,e., @=_. However, there are some applications when a better

example, when analyzing antennas mounted on an impedance wall [31]. In

this section, a more accurate asymptotic evaluation of the integral

along the steppest descent path is considered.

Recall that the function Me(W ) defined in Equation (3.170) has

three poles in the periodic w-plane. When the even diffracted field was

e
evaluated in Section C, it was assumed that the pole ws was never close

to the saddle point, so only the geometrical optics poles were allowed

e will also be
to be near the saddle point. In this section, the pole ws

allowed to be close to the saddle point, and details of the method [40]

are given in Appendix G.

Using the results of Appendix G, the uniform asymptotic evaluation

of the integral in (3.196), which takes into account the presence of the

e- e
poles w_ +, wr and ws, is given by (for large kp)
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] Me(w)eiPf(W)dw d: Ue(p,¢)~
CSDP

112

[(sin{e-cos,)(sin{e-cos@ ')]

sin@ + cos{ e

e e @,-I/(2_)[Jl(¢)+Jl( )
,e

_ eikp

• i_[sec(B+/2)T(a+,a_) + sec(B-/2)T(a-,ap)_l
(3.243)

where the function T, which is referred to as the composite transition

function, can be expressed as follows:

i F(_kLa+_) [ F([a_) /2 - a-+)I/2 -kLan)
+ e

T(a-,ap) = (3.244)
[a_) I/2 _ [a-+)I/2

+

The function a- was defined in Equation (3.198) and F(x) is the same

transition function as in Equation (3.197) but generalized to the case

of complex argument [41]. In order for (3.244) to converge, the

argument of vrx is restricted to [41]

-3_
T < arg (V'_) < _ (3.245)

as shown in Figure 3.14.

by

e 2we l
ap 2sin _

e is given
Furthermore, the complex function ap

(3,246)
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z. vi-

[_ REGION WHERE THE ARGUMENT OF _ iS

ALLOWED TO EXIT

Figure 3.14. _ plane.

It follows from (3.245) that

and

-37 _
T < arg [a_] < (3.247)

-37
T • arg [a±] • _ . (3.248)

In other words, the square root function _rxin (3.245) has a branch cut

in the x-plane as depicted in Figure 3.15.
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Figure 3.15. Top sheet of XI12 function where T < arg (x) < _.

Note that the new more accurate expression for the diffracted field

d
Ue(P,@) given in (3.243) does not vanish when ¢=_, that is

u_(p,_) $ O. (3.249)

In order to obtain a new more accurate expression for the odd

d
diffracted field Uo(P,¢) , which does not vanish on the impedance

surface, a different procedure is followed. The function Mo(W) given in

(3.227) is zero when the saddle point is equal to ¢=_, which means that

a higher order term is required. Instead of computing a higher order

term by the method described in Appendix G, another approach which is

given by Felsen and Marcuvitz [42] is followed. The details are given
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in Appendix H and only the final result is presented here. Thus, when

¢=x, and kp is large

uoo11 -I

2:1V_ e-ikp(1-c°s2¢') Q[-ib _] + ['_p) eikp

V ¸

2_i

sin¢'(sin2{°-cos2¢') I/2 e'l/(2_)J_(¢')

(sin¢' + cos{ °)

• I

I_ cos_ °-sin¢'

e-1/(2_)J_(_-¢' )- I

sine' + cos_ ° I

(3.250)

where

and

b = ,/'2ei_/4sin(¢,/2)

= 2

Q(x) = J e-x dx

Y

(3.251)

(3.252)

The new expression in (3.250) is not identically zero at ¢=_ for a

finite po However, as shown in Appendix H, when the parameter

IbVk'_l + =, udo(p,_) * O.
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E. SLOPEDIFFRACTEDFIELD

Whenthe diffracted field was obtained in Section C, it was

implicitly assumedthat the incident field ui(p,¢ ') had a slow spatial

variation in the vicinity of the diffraction point (x=O,y=O),except for

the phasealong the incident ray. Whenthis is not the case, it has

been shownin [10] that the diffracted field must be supplementedby a

higher-order term in the asymptotic expansion of the integral along

CSDP. This higher order term which is referred to as the slope

diffracted field uSd(p,@), is given by the following expression [10]:

YuSd(p,@) =

I_ _i(QE)

eikp
S

d (¢,@')_ (3.253)

where the vector n', and the point of diffraction (QE) are shown in

Figure 3.16. The expression for the slope diffraction coefficient

dS(@,¢ ') is as follows:

1 aDd

dS(_'¢') - ik a_' (¢'_') (3,254)

where Dd(¢,@ ') is the diffraction coefficient which was defined in

Section C. Substituting Equation (3.210) into (3.254) yields
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Y

Figure 3.16. Geometry for slope diffracted field.

-I l--l-Re--IeiX/4
rise("")=T; l_--_--_lr_T

I12

[(sin_e-cos_)(sin_e-cos¢ ')]

e
sine + cos[

-1/(2_)[j_(_)+J_(¢'))
• e

[sin(B-/2)F s (kLa-)-sin(B+/2)Fs (kLa+)]

[sec(B+/2)F*(kLa+)+sec(B-/2)F*(kLa-)]

I_2 sine'(sin[e-cos¢ ')

cos¢'

(sin@'+cos[ e)

xlZ+[e-¢ '

+

2xcos([e-¢ ')

I

(3,255)

117



for the even slope diffraction coefficient,

given by

Fs (kLa) = 2ikL _I-F (kLa)) .

The function F (kLa) is
S

(3.256)

Similarly, the odd diffraction coefficient can be obtained by

substituting (3,242) into (3.354). After some simplification, one

obtains

ei_/4
-2

dS°(_'@') - ik

112

cos(¢/2)[(sin{°-cos¢)(sin_°-cos¢ ')]

(sine + cos{°)(sin¢'+cos{ °)

-1/(2_)[J_(¢)+J_(¢'))
• e

cos(@'/2)[sin(B-/2)F s (kLa-)+sin(B+/2)Fs (kLa+)]

+

+ [sec(B-/2)F*(kLa-)-sec(B /2)F*(kLa+)]

• I,ZL ,n '
I 2(sin_°-c°s@' )

cos(¢'12)cos¢' sin(¢'/2)

g

(sin¢'+cos{ °) 2

cos(¢'12)(_12+{°-¢ ')

+

2.cos(_°-¢')

]

c°s(_'/2)(3_/2-¢'-_°)--II.+ 2_c°s(_+_°) ii

(3.257)
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Adding the slope diffracted field to Equations (3.205) and (3.237),

the total fields Ue(P,¢) and Uo(P,¢) become

and

r sw d sd
Ue(P,@)~ u_(p,@) + Ue(P,_) + ue (p,@) + Ue(P,@) + ue (p,@) ,

0 < _ < x (3.258)

r sw d sd
Uo(p,,)~ Uio(p,,)+ Uo(p,,)+ uo (p,*) + Uo(p,,)+ uo (p,*) ,

0 < @ < _ . (3.259)

F. SURFACE WAVE EXCITATION

Let the incident wave be a surface wave field as shown in Figure

3.17. Assume that

+i÷
i i_,r iBx -my

Usw = ve = ve e (3.260)

is the incident surface wave field, where

: xB + imy (3.261)

is the complex propagation constant. Note that the constants B and

are also complex, that is

and

: Br + iBI (3.262)

: _r + i_l " (3.263)
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Figure 3.17. Geometry for surface wave excitation.

Rewriting _ip in terms of real and imaginary parts, one gets

+i +i ÷i

= Cp + i{a
(3.264)

+i
where _ip and {a are the real and imaginary parts of +i

It follows from Equations (3.262) and (3,263) that

, respectively.

and

+i " _ " ~
{p = x r - y ml

+i " _ " ~
Ca = x I + Y mr

(3.265)

(3.266)
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1. Even Problem

The total field can be expressed in terms of the unperturbed and

scattered fields such that

Ue(X,y) : _e(X,y) + u_(x,y) (3.267)

where

_e(X,y ) isw. exp(i_ex _ey): ue _x,y) = v for Ixl<= , y>0 (3.268)

is the unperturbed field. It follows from Equations (3.8) and (3.17)

that

and

_e _e .~e = = ikcos{e coshh{ Im = mr + imI = ikae ikcos{e e

e e

+ ksin{ r sinh{ I (3.269)

2 II2 {e in{ e cosh{__e = _r + iB_ = k(1-ae) = ksin = ks

e e

+ iksinh{ I cos{ r (3.270)

Note that the unperturbed field exists on the whole impedence plane

shown in Figure 3.2. Substituting Equations (3.269) and (3.270) into

(3.265) and (3.266) yields

÷ie e e " e
{p = kcosh{ I (x sin{ r - y cos{r) (3.271)

and

A

÷ie e e " e

ga = ksinh_ I (x cos_ r + y singr) (3.272)
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The vector +ie_p is usually referred to as the propagation vector, while

+ie
÷ie_a is known as the attenuation vector, It is easy to show that _p

+ie
and _a satisfy the following identity:

÷ie ÷ie
_p " _a = 0 . (3.273)

Recall that ae is either the normalized impedance (TEz) or the

normalized admittance (TMz). It follows from (3.269) that the surface

wave field Uisw exists if and only if Im (ae) < O. In other words, it

exists if

or

Im (Zs) < 0 for the TEz polarization (Hz) (3.274)

Im (Zs) > 0 for the TMz polarization (Ez) (3.275)

Thus, for a given surface impedance Zs, only one polarization of the

surface wave field can exist.

s
The next step is to solve for the scattered field Ue(P,@ ). Exactly

the same procedure as in the case for plane wave incidence is followed

u_(p,¢), The scattered field satisfies Equations (3.22),to solve for

(3.23), and

a S -a ,,.
a-yUe(X,Y) : _'_ Ue(X,y) for y = O, x > O. (3.276)

Details of the solution are shown in [46] and in [43] where the dual

integral method is employed. For large kp, the total field Ue(P,@) can

be expressed as
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isw, ° rsw, dsw
~ ue IP,_) U(_-@le ) + ue tP,_) U(@-_ s) + ue (P,_)Ue(P,¢)

0 < ¢ < _ (3.277)

where

urWheyi ie _P'¢) = exp j sin__.__dt exp(_i_ex _ _ey)
sing e

m

0 (3.278)

is the reflected field and

dsw,
ue tp,_) =

ve-i_/4 icos{ e

(sin{e-cos¢)

lineoil(1+sin{e) (sin{e+cos¢

I12

exp[J_(¢)/(2_))

ikp
e

(3.279)

is the diffracted field.
e

The function J2(¢) is given by

_+_e__/2 2_ e-_
U U

J (¢) = J sinu du - J sinu du . (3.280)

0¢-{e+_12

dsw,
The diffracted field ue _p,¢) was computed assuming that no poles

were close to the saddle point. In other words, Equation (3.279) is not

a uniform asymptotic expression. This means that u_sw is a valid

expression away from the shadow boundaries ¢=$_ and ¢=¢_. However,

dsw,
near the same shadow boundaries ue tp,¢) is not correct because the
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total field will be discontinuous when @=$1e and @=_e. In the next

section, a uniform asymptotic expression for udSW(p,@)will be obtained.e

isw and ursw are not very significant withThe surface wave fields ue
dsw,

respect to ue £p,@) when the observation point is away from @-_.

Therefore, they can be ignored when the angle @ is away from the

impedance surface and the expression for udsw given in Equation (3.279)
e

is quite accurate.

The angle _e was defined in Equation (3.203) and @le, which is

computed in exactly the same way as _e, is given by

Ee _ arcsin 0 < Er < ET > O,
oE

+re
As in Equation (3.261), one can define a vector

(3.281)

such that

;_e +_re + i_ e_re :-x _e + i m : _p (3.282)

+re +re
where Cp and Ca are the propagation and attenuation vectors of the

urSW
reflected surface wave field e , respectively.

It follows from (3.282), (3.269), and (3.270) that

e ^ e
+re -x _rr ; m_ : kcosh{_ (-xsin_ r_p : _ _ ycOS_r) (3,283)

+re ^ e ^ _e _ ^ e ^ eCa = -x BI + y mr = ksinhE (-x cosE r + ysinEr) (3.284)
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The vectors Ere and Ere are shownin Figure 3.17 Furthermore Ere and_p _a • ' _p

_re satisfy identity (3.273), and Ee has to satisfy Equation (3 204) soa

that the pole contributing to the reflected field u_sw can be captured.

2. Odd Problem

In this case, the scattered field uS(p,¢) satisfies Equations

(3.103), (3.104) and

S
Uo(X,y ) = -_o(X,y) for x >0 , y = 0 (3,285)

where _o(X,y) is the unperturbed field given by

isw,
_o(X,y): uo ix,y): v exp(i_°x_Oy) (3.286)

where

-_ {o= ikcos = ika ° (3.287)

_o = ksin{O = k(l_a_) I/2 (3.288)

It follows from [43] that the total field Uo(P,¢) is asymptotically

equal to

isw, _ rsw. dsw.Uo(P,_ ) ~ u0 _p,_)U(¢-$ ) + u0 _p,_)U(_-_) + u0 _p,_) ,

0<¢<_ (3,289)

where _sswas defined in Equation (3.234) and ¢I0 is given by
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o o~i o _ arcsin , 0 < _r < _/2 , {I > 0 .
@o = _r o h_

(3.290)

rsw is the reflected field which is given by the followingThe field uo

expression:

rw vo°Ii °uiI r°uo tP,@) - {o exp J sin_ du e
sin 0

÷

• r

(3.291)

where

+ro
_ro = _x_O + i_o y = ÷pOop+ ic a (3.292)

The propagation vector ÷to is equal to
Cp

÷r° =-X_rrCp - Y _° :kcosh_(-xsin_°mI - ycosE °) (3.293)

÷ro
and the attenuation vector Ca is given by

+ro ^ _II ^ --o _( ^ Eo Y o)Ca = -x + y mr = ksinhE -xcos + sine
(3.294)

The diffracted field udosw can be expressed as follows:

_ie-_/4v
dsw,

uo (p,_)
n_°_o_Ll

• i__
+cosCJ

112

exp 1 o ] eikp/(2_)J2(@)

¢p

,0<¢<_ (3.295)
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where

¢+_°-_12 u 2E°-I u

J (¢) = J sin----_du - J sinu du . (3.296)

@-_°+_12 0

As in the even case, the diffracted field is computed assuming no poles

are close to the saddle point. In other words, the expression for

dsw.
uo tp,_) in (3.295) is not uniform. Therefore, the total field Uo(P,¢)

is not continuous at the shadow boundaries @=_ and @=@_. A uniform

expression for Uo(P,¢) will be obtained in Section 3. Furthermore, in

order for the field u_sw to exist, _o has to satisfy Equation (3.235).

3. Analytic Continuation

There is another way to obtain the total fields Ue(X,y) and Uo(X,y)

by an analytic continuation of the angle ¢' into the complex domain for

the case of plane wave excitation [24].

Recall that when the angle of incidence is equal to the Brewster

angle _b' the Fresnel reflection coefficient vanishes [21] such that

sinCb-COSE

R(¢' = Sb ) = = 0 . (3.297)

sinCb+COS

It follows from Equation (3.297) that

_b = _12 ± { . (3.298)
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Substituting Equation (3.298) into (3.16), one concludes that the only

possible solution is

@b: _/2 + _ . (3.299)

EVENPROBLEM

or

Substituting Equation (3.299) into (3.16) yields

isw(¢,_) = ve-ikpcos(@-x/2-_e) = ve-ikpsin(@-{e) (3.300)
U e

ueiSW (@,$_) = v exp(iBex _ ~emy) (3.301)

which is identical to Equation (3.268). The expression for us(p,@b,@)~ee

becomes

vcos{e j Ge(-kcosw) eikpc°s(w-@)

s ~e dw . (3.302)
Ue(P'¢b'_) - 2_i Fe (cosw_sin_e) Ge(_ksin_e)

W

The original geometrical optics poles w_+ and w_- become

w--e+ _bb {e 0 < e er = _ - = x/2 - , _r < _/2 , {I > 0 (4.303)

and

wT e-_ + -_/2 + _e o, 0 < {r < _/2 , {I > 0 (3.304)

~e+ ~e-
where the new poles wr and wr are depicted in Figure 3.18. Note that

in this case, the pole _e- will contribute to the total field unlike the

case for plane wave excitation where we+
r contributes to the total field.

Deforming the contour of integration rew' one gets
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ue

vcos {e Ge(_kcosw) eikpcos (w-@)

2xi
+ I dw

CSD P (cosw-sin_ e) Ge(-kcosW_rr-)

(3.305)

where the steepest descent path CSD P is shown in Figure 3.18.

The residue at W'_r-iSgiven by

Res (w_') =

vcos{ e Ge(-ksin{ e)

cos{ e 2_i Ge(-kcosw_ -)

eikpcos ({e__/2- @)

v

= _ exp(i_ex _ _ey) (3.306)

e it is necessary to rewriteIn order to compute the residue at ws

c-e(-kcosw)/Ge(-kcoswe-). Substituting Equation (3.167) into (3.304)

yields

e e
_e- = -_/2 + 3_/2 - ws = _ - ws (3.307)

Thus,

G (k o w IG (k o ;RI=
Ge_(-kcosw)

G_(kcoswe)

Ge(-kcosw)

G_+(-kcosw)G_.(kcosw_)
(3.308)
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TOP RIEMANN SHEET IN S-DOMAIN WHERE 'rm_O

Figure 3.18. Integration paths I"w and CSD P in the periodic w-plane for
k--kI (real).
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Substituting Equations (3.186)-(3.188) into (3.308) one obtains

Ge(-kcosw)

G_(kcosw_-) lie!
sinw

inw+cos{

e e I/2
[(sin{e-cosw)(sin_. -cOSWs)]

2sin(w/2) sin(w_/2)

}ie:w o• exp [Jl(Ws) +

Now the residue at we
s can be computed, After some simplification, the

e
residue at ws can be expressed the following way:

Res(w_) :

v(l+cosw_)
e e

2_icoswe exp (-Jl(Ws)/_) exp(iBex - _ey), Y • 0 (3.310)

where

2_e-_

Je,l{WsJe" = j_(3_/2.{e) = j

0

t/sint dt . (3.311)

For the case of plane wave excitation, the uniform asymptotic

evaluation of the integral along CSDP was equal to the diffracted field

u_(p,¢). Therefore, the diffracted surface wave field can be obtained

directly from Equation (3.196) by letting @'=_bb = x/2 + _e such that
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u SW(p, )=

i_14
-ve [(sin{e-cos@) 2sin{ e]

2(sin@ + cos{ e)

I12

expI ÷ iIwsl

"I_secC(¢+_/2+{e)/2) T(a+'a; ) + sec ((¢-X/2-{e)/2) T(ae'a_)--I_ eic'p-kp

(3.312)

4-

where T was defined in (3.244), ae is given by

ae = 2cos ¢+(_/2+{ e))
(3.313)

and F(x) is the generalized transition function where x can be a complex

number. As stated before• the argument of _has to satisfy Equation

(3.245) in order for (3.312) to converge.

Substituting Equations (3.306),(3.310) and (3.12) into (3.05)

yields

i rsw, dsw,
s : (p•@) ~ -v exp(iBex - a_ey) U(@e-¢) + Ue _P'@) + Ue _P•¢)U e •

0 < ¢ < _ (3.314)

rsw (p,¢) is the reflected surface wave field given bywhere ue
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urSW(p,¢) :e

v(l+cosw_)

e
cosw

s

exp(_j_((we)/x) exp(_i_ex _ _ey) U(¢__ss)

(3.315)

which is identical to Equation (3.278). The total field Ue(P,¢ ) is

obtained by substituting Equation (3.314) into (3.267). Thus, for

large kp

u(, +  e SWlo,Iue(p,¢) ~ ue (3.316)

where ueisw'¢,¢_)__= was defined in Equation (3.301)

dsw(p,@) in Equation (3.312) isNote that the expression for ue

uniform, whereas the non-uniform result was previously given in Equation

(3.279). Thus, one can get the expression in (3.279) from (3.312) by

assuming that IIm(_e) I is large. In other words, for large IkLa_l and

IkLa_I, it can be shown that [11] F(-kLa_) = F(-kLa_) - 1. It follows

from (3.244) that

T(ae,a _) - 1 . (3.317)

Substituting Equation (3.317) into (3.312) yields

dsw,

ue _p,¢) =

-i_/4
ve icos{ e

(sin{e-cos¢) (l+sin{e) (sin {e+cos ¢)_I

I-- 112

I sin_,-cosEe-I
el

Iji n@+cos { _I

-I/(2,)[j_(¢)+j_(we) ] eikp
e

/;--.
(3.318)
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e e
where Jl(Ws) was defined in Equation (3.311) and

_/2-¢+_e t ¢-_/2"_e ¢+{e-3_/2 tt

J_(_) I sin-----tdt = - I sin-----tdt = I sint

3_/2-@-_ e ¢+_e-3_/2 @-_/2-{ e

m dt

(3.319)

e

Letting u = t + _, J1 becomes

@+{e-_/2 @+_e-_/2 @+_e-_/2
U-1I U 11

J (_): f sin(u-_) du : - f sinu du + _ sinu du-

¢_ _e+x/2 @__e+_/2 ¢_ {e+_/2

(3.320)

The second integral in Equation (3.320) can be evaluated in closed form

such that [44]

@+{e-x/2
11"

f sinu

¢_ _e+_/2

_du = _log

m

¢+{e-_12
tanF_ 2

= _Iog

(4.321)

Using Equation (3.320) and (3.321), one obtains the following

expression:

exp 1-1 (J_(@)+J_(we))--I = i/(2_)d_(@)l--sin¢+cos_e--I
e _in@_cos{e I

112

. (3.322)

Finally, substituting (3.322) into (3.318), one obtains
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udSW,
e tP,¢) =

-i {eve _/4icos

(sin{e-cos_)

ikp
e

l+si nEe) (sin ce+cos ¢5

I/2

(3,3235

which is identical to Equation (3.279).

ODD PROBLEM

In this case, letting ¢'=_b=_/2+{ ° in Equation (3.16) yields

.iswI_ ,-o_ ,,^-ikpsin(@-{°)
u 0 k_,,eb/ = ,c ---- V _vn , _ A -- l"b / •_..Af.,, _ J / "0 _ r,

0 ( ¢ ( _ (3.324)

where Uo(@,_b) is the unperturbed field. Furthermore, Equation (3.212)

becomes

-V

s = fUo( 2-TF

r o
W

G°(-kcosw) eikpc°s(w'@Ssin w dw

(cosw-sinE°5 G_°(-ksin{°)

(3.325)

The geometrical optics poles W°+r and w°" become

W_r+ = _/2 - E° (3.3265

and

w_°- = -7/2 + E°
r

(3.3275

where 0 < Re(E°)( ,12 and Im(E°)> O. The above two poles
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are depicted in Figure 3.18. Note that the integrand in (3,325)

still has three poles, namely w"°+ _o- o' r ' Wr and ws. Following the same

procedure as in the even case, the total field Uo(P,¢) is given by

_i0 rsw, dsw,Uo(P,¢) ~ uioSW(p,¢) U(@- ) + u0 tP,@) + u0 tP,@) , 0 < @ <

(3.328)

where

rsw, vtan (wT) o ouo tp,¢) = exp(-Jl(Ws)/_) exp( -i_°x _ _Oy) u(_ s)

(3.329)

is the reflected field, and

udSW(p,¢) ~
0

112

-ve i_/4 cos(@/2) [2si n_°(sin_°-cos_)]

2sin(wT/2) sin¢+cos{ °

_1/(2_)[j7(@ o o)+Jl(Ws)]
.e

• l--sec ((¢-,/2-{°)/2) T(ao, ap)

- sec ((¢+x/2+{°)/2) T(ao,a p)

ikp
e

v$
, 0<¢<_ (3.330)

-+ 0

is the odd diffracted field. The constants ao and ap are given by

<2+o>iioao2cos2I; a0 2(: 2sin (¢-w7)12) (3.331)

and they satisfy Equation (3.248). Note that T is the composite

transition function which was defined in (3.244).
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As expected, the diffracted field in (3.330) is not the sameas the

one given in (3.295). However, assumingthat IIm 6oi is large enough so

that Equation (3.317) is true, Equation (3.330) becomes

udsw[ p,_) ~
0 "

-vie -i_/4 sine

(sin{°-cos¢)

rn,cos OJ
• I_in,+cos_OI .exp

-- I12

i n_°+cos ¢._1

I--_T_ (J_(¢)+j_(Ws°))--I eikp ,0<(I,<_.

(3.332)

As in the even case, it can be shown that

I--I l_in_,c0s_Ojl/2
exp J_'_ (J(_( 0 0 ii : o

Substituting (3.333) into (3.332) yields

dsw,

uo tp,¢) ~vei!n n°inE°-cos_l.1_°÷_o_1

ikp
e

0

"exp(J2(¢)/(2_)) _ '
O< (I,<_ (3.334)

which is the nonuniform expression obtained in Equation (3.295).
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CHAPTER IV

IMPEDANCE BISECTION PROBLEM

(OBLIQUE INCIDENCE)

A. STATEMENT OF THE PROBLEM

Chapter Ill was restricted to the case where the fields had no

z-variation; hence, it was a two dimensional problem. In this chapter

the more general case of oblique incidence will be considered. The

geometry of the problem is shown in Figure 2.6. It was shown in Chapter

II that there are two ways to scalarize this vector problem. In this

chapter, the normal field components Ey and Hy will be used. Recall that

these fields satisfy the scalar Helmholtz differential equation as shown

in Equations (2.36) and (2.37). Furthermore, as indicated in Chapter

II, the normal field components Ey and Hy independently satisfy the

following impedance (or Leontovich) boundary conditions for x<O, y=O:

I__ + ikaa_l Ey = 0 , x < O, y = O, Izl<® (4.1)

where

-@ -I5 + i _I Hy= 0 x < O, y = O, Izl<® , (4.2)
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D

aa = IZs/no = normalized impedance, TMy polarization

ah Ino/Zs normalized admittance, TEy polarization

(4.3)

The subscript " a" refers to the Ey field, while the subscript "h"

refers to the Hy field.

When the region {x>0, y:0, Izl<®} is a PEC, the boundary conditions

are given by Equations (2.32) and (2.33). On the other hand, if a PMC

ocupies the region {x>0, y:O, Izl<®}, the boundary conditions satisfy by

Ey and Hy are given by Equations (2.34) and (2.35), respectively. Thus,

there are four problems that need to be solved. The case when a PEC

ocupies the half-plane {x>0, y:O, Izl<®} will be solved for both

polarizations. The other case, when the PMC ocupies the same half-plane

as the PEC, will be obtained by duality for both Ey and Hy fields.

B. PEC CASE

e

1. TMy polarization (Ey, even problen)

Let the incident field be equal to

I I I

Ey (x,y,z) =Ecy exp[i (kxX-kyy+kzZ)] (4.4)

where E
cy

given by

I I I

is an arbitrary constant, and the constants kx, ky, and kz are
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I I I

kx=-Kcos 0' ; ky= Ksin@' ; kz:-kcosO' ; 0<0'<_, 0<_'<_ (4.5)

where

K=KI + iK2= ksinO'= (k I + ik2)sinO' (4.6)

Substituting Equation (4.5) into (4.4) and using cylindrical

coordinates yields

I

Ei(x,yy ,z)=Ecy exp[-iKpcos(@-¢')+ikzz] (4.7)

Note that the boundary conditions are not a function of z, and since the

geometry depicted in Figure 2.6 is a two-dimentional geometry, it

follows that all components of the total field Ey, i.e, Ey, Ey, E ,

etc., will have the same z-variation. In other words, they will have
I

the common term exp(ikzz ). Consequently, the differential Equation

(2.36) becomes

2 2

(V t + K )Ey:O , y)O, Ixl and Izl< ® . (4.8)

Following the same procedure as in Chapter III, the total field Ey can

be expressed as

e se ~r ~i y)O (4.9)
Ey(x,y,z)=Ey + Ey + Ey
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where _ is the unperturbed reflected field given by

I I I

_r(x @' exp[i (kxX+kyy+kzZ) ]y ,y,z)=Ecy Ra( ,O',_a ) (4.10)

where

Ra( ¢',0',6a)=

(4.11)

iq thp Prpqn_l rmflmrflnn rn:fflri:nf fnr nn imn:Hnnr,, wnll Nnf-, fh:f

the superscript "e'°refers to the even problem.

Since the field ESe(x,y,z) satisfies the same boundary conditions
Y

(Equations (4.1)and (2.32)) and differential equation (except that k is

replaced by K in Equation (4.8)) as the field uS(x,y) in Chapter Ill,

it is not necessary to repeat all the analysis for Ese However, the
y •

e have to be
similarities end when the edge conditions satisfied by Ey

used. Therefore, it follows that Ey+ and Ey_

A

satisfy Equation (3.58),

that is

_ae(s)Gae(s ) ^se :se, Gae
= Ey_(S,O) + ty+_S,O) (s) , T_< T <_+ (4.12)

I

where the common term eikzz has been dropped and
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z_=(Im K)cos@'= K2cos@'=k2sinO'cos¢' (4.13)

T+=(Im K)= K2= k2sinO' (4.14)

The constants Gae(s) and @ae(s) are defined as follows:

ae
G (s): B + kaa (4.15)

!

i Ecyky (1-Ra)

_ae(s ) , (4.16)

(S+kx)B

where the function B, given by

2 2 I/2
B= (K - S ) (4.17)

is defined in exactly the same way as in Chapter III, except that k has

ae(s)_ae(s),been replaced by K. Factorizing Gae(s) and decomposing G+

one obtains

ae(s)Gae(s)Gae(s) = G+ (4.18)

ae(s) + Dae(s)G_e(s)¢ae(s): D+ (4.19)
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where Gae(s) is regular and free of zeros in the lower half s-plane
i

ae
defined by T < K2, while G+ (s) is regular and free of zeros in the

upper half s-plane T > -K2. The details of the factorization of Gae(s)

are shown in Appendix D. As shown in Appendix E, the decomposition of

ae(s) and Dae(s)G+ae(s)_ae(s) can be done by inspection. The functions D+

are given by

!

iEcyky (1-Ra) -- I

ae I ae_]
- - - G+ (s (4.20)D+ (s) = ' ae '

k_a(S+k x) G_ (-kx)

iEcyky(1-Ra) - I 1

L:oaeDae(s) = ' s) Gae( (4.21)
- v_ k6a(S+kx) _ _kx)

Bewhere D+ (s) is regular in the upper half s-plane T > T_, while Dae(s)

•is regular in the lower half s-plane T < T+. Furthermore, by the same

arguments as in Chapter Ill, Ey+(S,O) is regular in the upper

half s-plane defined by T > __ and Ey_(S,O) is regular in the lower

half s-plane defined by _ < T+.

Substituting Equations (4.18)and (4.19) into (4.12)yields

ae _Se(s,O ) ae(s ) ^Se(s,O)/Gae(s) Dae( , _
D+ (s) - _y+ G+ = Ey_ _ - _ s) T <T<T+. (4.22)
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By analytic continuation, both sides of equation (4.22) are equal to a

polynomial P(s) (P(s) is an entire function which is unknownat this

point) such that

ae _se( ae _se, ,0)/Gae(s) Dae(s) P(s) for all sD+ (s) - y+,S,0)G+ (s) = Ly_tS _ - _ =

where

P(s): Co + Cls + C2s2 + ... + Cnsn

(4.23)

• (4.24)

In order to obtain unique solutions for _se Ese it is necessary to
y+ and y_,

n
determine the unknown coefficients {Ci}i= 0. In Chapter Ill, the

coefficients of the polynomial P(s) were determined by examining the

asymptotic behavior of both sides of equation (3.65)• The same

procedure will be followed in this chapter. Using the results of

Chapter Ill, one obtains

Be
G+ (s) ~ 1 as Isl + - for T > T_ (4.25)

Gae(s) ~ 1 as Isl ÷ ® for T < T+ (4.26)

a _iD e(s) ~ s as Isl + ® for T > T_ (4.27)

_I
Dae(s)_ ~ s as Isl ÷- for T < T+ . (4.28)

Thus, the asymptotic behavior of _se and ^se remains to be determined
y+ Ey_

It is shown in Appendix B that the behavior of the transverse components

Ey and Hy near an edge is more singular than that of the tangential
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components Ez and Hz by a factor of p-1 (see Equation (B.6)). It follows

from Equations (A.13) and (A.15) that

_S
6)e(s,o)- Ue+(S,O)s
J

as Isl ÷ ® for T > __ (4,29)

as Isl ÷ - for T < T+ . (4.30)

Substituting Equations (3,66) and (3.67) into (4.29) and (4.30),

respectively, one obtains

ESe(s,O) ~ so as Isl + ® for T > T (4.31)
y÷,

ESe(s,O) ~ sO as Isl ÷ ® for _ < _+ . (4.32)
j-

Moreover, substituting (4.25)-(4.32) into (4.22) yields

IDae(s) :se, ae(s I as lsl ® for T > T.- _y+tS,O)G ) ~ sO ÷

IEye(s,O)/Gae(s)_ _ - Dae(s)l~s0_ as

(4.33)

Isl ÷ ® for T < T+ . (4.34)

It follows from (4.23) that

P(s) ~ so asIsl÷" (4.35)

Thus, at most the polynomial P(s) can be a constant such that

e
P(s) = Ca

(4.36)
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It will be shownlater that indeed, P(s) has to be a nonzero constant in

order to obtain solutions that satisfy the radiation condition.

Substituting Equation (4.36) into (4.23) and solving for ESe(s O)
y+ ,

and ESe(s,O), one obtains
y m

e Gae(sEse+(s,O) = (Dae(s) - Ca)/ ) (4.37)
3

E;e(s,0). : (Ce + Dae(s))Gae(s)__ (4.38)

e
where the unknown constant Ca has to be determined.

(4.37) and (4.38), the expression for _se becomes
Y

Combining Equations

!

ESe(x,y,y Z)-L'-"ESe's,O)+Eye(s,O)]y+t_ exp(ikzz +iBy), y>O, T_<T<_+ ,(4,39)

Substituting Equations (4.20), (4.21), (4.37) and (4.38) into (4.39)

yields

!

liikiIRa' el_se Gae(s) Ecy kaaC ey = _ _ _ i(By+kzZ) , y)O ,

B J'_2"_'(S+kx)G ae_(-k'x) _ (4.40)

Finally, taking the inverse Fourier transform of (4.40), one gets

se _1 j_+ia =Se(s,y,z)exp(_isx) ds
Ey (x,y,z)= _ --+ia Ly

(4.41)

where the path of integration is shown in Figure 3.4. Before the
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e is determined the general form of the solution for the TEyconstant Ca ,

polarization will also be obtained next.

o odd problem)
2. TEy polarization (Hy,

In this case, the incident field is

I I I

Hi(x,y,z)= exp(i x + kzZ))Y Hcy (kx - kyy
, y,O (4.42)

where Hcy is an arbitrary constant. The total field Hy satisfies the

boundary conditions given in Equations (4.2) and (2.33), and the

differential equation (2.37).

Since H°(x,y,z) satisfies the same boundary conditions and
Y

differential equation as the odd field Uo(X,y ) in Chapter Ill, one can

use the results of Chapter Ill in this section. On the other hand, one

0

notes that Uo(X,y ) and H;(x,y,z) satisfy different edge conditons at the

origin x=y=O, and as shown in the previous section, this difference has

an important effect in the final solution for H°(s,y,z).

As in Chapter III let H° be equal to
' y

H;(x,y,z)=Hy°(X,y,z) + Hy(X,y,z) + H;(x,y,z) , y)O (4.43)

where _(x,y,z) is the unperturbed reflected field given by

(x,y,z)=Hcy Rh(_',O',6h) exp(i(kxX+kyy+kzZ)) ,

in which

(4.44)
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sin@' - ah/sino'

Rh( ¢',o' ,6h)= (4,45)
sin@' + ah/sine'

is the Fresnel reflection coefficient for an impedance wall.

The scattered field H_°(x,y,z) can be obtained by the same approach

used in Chapter Ill. Without repeating the analysis, it follows from

(3.131) that the Wiener-Hopf equation is given by

^'SO
ioh+°(s)+ Gh+°(s)Hy+(s,0) - ioh°(s),

iGhO(s ) - _
<T< T+ (4.46)

where T_ and T+ were defined in (4.13) and (4.14), respectively. It

ho DhO
follows from Equations (3.129) and (3.130) that D+ and _ are given by

H i(I+Rh)

D+ (s) = , , - k_hG + (s) (4.47)
(s+k) h°(-kx)

X _

Hcyi(l+Rh) -- 1 1

Dh°(s) = ' ho Gho( (4.48)
" _ (s+k) (s) -kx

X _ _

and

Gh°(s) = 1/(B + kah) = G_°(s) Gh°(s)_ (4.49)

ho
The expressions for Gh°(s)_ and G+ (s) are given in Appendix D, and the
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^ISA

notation Hy+°(s,0) means

^SO

d Hy+(S,y)

y+
at y=0 . (4.50)

Since all the functions in Equation (4.46) have a common region of

regularity (the strip defined by _+ < T < T_), one concludes (by

analytic continuation) that both sides of (4.46) are equal to an entire

function D(s) which happens to be a polynomial in s such that

o)
^'so for all

h°(s) (s,0)- - iDh°(s)=D(s) s (4.51)
iDh+°(s) + G+ Hy+ _cho1_ _ _

where

D(s)=d o + dis + d2s 2 + ... + dnsn (4.52)

Note that all the coefficients {di} are unknown at this point in the

analysis. Moreover, as in the TMy polarization, the asymptotic behavior

of all the functions in Equation (4.51) have to be determined. It was

shown in Chapter III that

_1/2

G_°(s) ~ s as Isl+ ® for T > T_ (4.53)

GhO( _I/2_ s) _ s as Isl + ® for T < _+ (4.54)

ho _t
D+ (s) ~ s as Isl + ® for T > T_ (4.55)
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_t/2
Dh°(s) ~ S as Isl + ® for T < T+ . (4.56)

w

By the same arguments as in the case of TMy polarization, the asymptotic

^'so HS°Is,O) can be obtained as follows:
behavior of Hy+ (s,O) and Y-"

_o ^s ,o)s(s,o) _ Uo_(S as IsI + = for T < T+ (4,57)

^I s
_S°(s,o)_ Uo+(So)s
y

as Isl + = for T > T_ . (4.58)

Substituting Equations (3.144) and (3.145) into (4.57) and (4.58),

respectively, yields

HS°(s,0) ~ sO as Isl + ® for _ < T+ (4.59)
y-

^_SO

Hy+ (s,0) ~ s I/2 as Isl * = for • > T_ . (4.60)

Using Equations (4.53)-(4.60) in (4.51), one obtains

i hO<s)+ IiD+ yS+°(s,0)G+h°(s) ~ so

li_S°(s,0)IGh°(s) - iDh°(s)l ~ sl/2Hy_ _ _

as Isl + = for T > T_ (4.61)

as Isl + = for T < T+ . (4.62)

By the extended form of Liouville's theorem [32], the polynomial D(s) is

of degree less than or equal to the integral part of min(O,I/2).
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That is,

D(s) = do
h (4.63)

o is still an unknown constant.where dh

Solving for HS°(s,O) in (4.51) one obtains
y-

_ doHy°(s'O) :-iGh°(s)[ h + i Dh°(s)]_ (4.64)

The expression for H)°(s,O) can be obtained from (3.148) by replacing v

by Hcy such that

-iHcy(l+R h)

_so. ,0) (4.65)
y+_S = , .

¢2; (S+kx)

It follows from (3.113) that H_°(s,y,z) is given by

_)O(s,y,z ) "so _=[Hy+(S,O)+H °(s,O)]. exp(ikzz +iBy), y>O ,T_<T<T+ .(4.66)

Substituting Equations (4.48), (4.64) and (4.65) into (4.66) yields

Gh°(s)l i Hcy (l+Rh)
_SO - i

Ny = I V-_-(S+kx) hoG (-kX)
'--I m T_<T<T+

d ei(By+kz z) , y>O .

_ (4.67)

Finally, taking the inverse Fourier transform of (4.67), one obtains
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1 -+i b y)O

y -- J _S°(s,y,z)exp(-isx) ds , T <T<T+H O(x,y,z)= _ -_+ib Hy (4.68)

where the path of integration is shown in Figure 3.4.

3 Determination of the constants Ce and o
" a dh

e o
In order to determine the unknown constants Ca and dh, it is

necessary to solve for the other field components, i.e., Ex' Ez' Hx' Hz'
A

in terms of the normal field components Ey and Hy. It is shown in

Appendix I that the following relations hold; namely,

ikzk Hy(s,y,z) + iYoSB Ey(s,y,z)

Ex (s'y'z) = '2 (4.69)
iYo(s 2 + k z )

k,',oS y(S,y,z)-  y(S,y,z)
Ez(S,Y,Z) : , (4.70)

(s 2 + kz 2)

k I

-i z k Ey(s,y,z) + inoSB Hy(s,y,z)

Hx (s'y'z) : '2 (4.717
ino(S 2 + kz )
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Hz(s,y,z) :

!

-kYoS Ey(S,y,z) - kzB Hy(S,y,z)

(s2 + k'2)
Z

(4.72)

Note that all the four expressions above have two poles at

!

s = ik = -ikcose' 0 < O' <
Z

(4.73)

and

!

s = -ikz : ikcose' , 0 < O' < (4.74)

Taking the inverse Fourier transform of Equations (4.69)-(4.72), one

gets

1 -+ic

ExS (x,y,z)=--_ --+icj E: (s,y,z)exp(-isx) ds

y>O

, T_<T<T+
(4.75)

I -+ic y>O

Es (x,y,z)=--J E_ (s,y,z)exp(,isx) ds , T_<T<T+
Z /'JT- --+ic

(4.76)

I -+ic y>O

HxS (x,y,z)=--_ --+icj HSx (s,y,z)exp(-isx) ds , T_<T<T+ (4.77)

S 1 --+iC y>O

Hz (x,y,z)= _ !'+ic (s,y,z)exp(-isx) ds , __<T<T+ • (4.78)
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The next step in the analysis is to examine the poles at $ikcosB'

and determine what kind of fields they contribute, and whether or not

these fields are physically possible. Let sI and s2, shown in Figure

(4.1), be defined as follows:

Sl = iklcosO, I (4.79)

s2 : -iklcose' I (4.80)

For x<O, the path of integration in Equations (4.75)-(4.78) can be

closed in the upper s-plane as depicted in Figure 4.1 such that

_+ic x<O

J g(s) e-isx ds + J g(s) e-isx ds =_t_g(s) e-isx ds , y,O (4.81)

-_+ic rI

where g(s) represents any of the fields in Equations (4.69)-(4.72). Note

that for x<O, only the pole sI will be captured. Applying Cauchy's

Residue Theorem in (4.81) yields an expression of the form

exp(iky-islx) = exp(ikly+ik21cose'Ix)exp(-k2y+kllcose'Ix) , x<O

(4,82)

where k was defined in Equation (1.7). At s=s I or s2, the function B is

equal to

2 2 2 i12

B(s=sI or s2) = (K + k cos O') = kI + ik2=k (4.83)

on the top Riemann sheet (ImB > 0).
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Figure 4.1. Integration paths on top Riemann sheet: Im (B) >0,
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The expression in (4.82) does not satisfy the radiation condition

since it represents a wave which propagates towards the origin

(x=O=y=z). Likewise, for x > O, the path of integration in Equations

(4.75)-(4.78) can be closed in the lower s-plane as illustrated in

Figure 4.1 such that

_+ic

J g(s) e-isx ds +
--+ic

x>O

g(s) e-isx ds =_g(s) e-isx ds , y)O . (4.84)

r2

As shown in Figure 4.1, only the pole s2 is captured for x > O. Applying

Cauchy's Residue Theorem in (4.84), one obtains an expression which is

proportional to

exp(iky-is2x) = exp(ikly-ik21cose'Ix)exp(-k2y-kllcosB'Ix), x>O.

(4.85)

This expression also represents a wave which propagates towards the

origin in violation of the radiation condition.

Thus, the poles sI and s2, which contribute waves that do not

satisfy the radiation condition, are not valid Poles. Consequently, the

numerators of Equations (4.69)-(4.72) should be equal to zero when s is

equal to sI or s2. It can be shown that by setting the numerators of

(4.69)-(4.72) equal to zero at s=s I and s2,,one obtains only two

equations:

^ ! ^ !

ino Hy(ikz) - Ey(ikz) = 0 (4.86)
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! I

i.° _y(_ikz)+ _y(-ikz) = o
(4.87)

Substituting (4.40) and (4.67) into (4.86) and (4.87) yields

I

ae,.,', _ 6aCe I =

G. _IKz) I- iEcyky(1-Ra)

i "-----;---T--ae ,

j_v_(ikz+kx)G. (-kx)k

'linoGh_°(ikz) Hcy (l+Rh) + d

' ' ho '
_-(kx+ikz)G" (-kx)

(4.88)

noGhO(_ikz ) Hcy (l+Rh)
-- i I I

V'_T'(kx-ikz)Gh°(-kx)_

m

_I
!

,-__ "a_ ,_c_;I
-Gae(-ikz) I ..... T--T-

(4.89)

e
The last two equations can be used to determine the two constants Ca

o
and dh such that
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Ce =
a

I I

iEcyky(1-Ra)kx

' '2 '
_2-_-(kz2+ kx )Gae(-kx)k6a_

+

I

ik z k

' '2
_'_'#-(kz2+ k x )kaal_cel

!

"I-- iEcyky(l-Ra) lAce I

I_ Ga_Ik_)k

+ Hcyn°2(l+Rh)Gh°(ik'z)--I

h ]0
G_ (-kx)

(4.90)

0

dh=

I

-Hcy( l+Rh)k x

kz2+ kx2' GhO '
_-_-( ) _ (-kx)

+

I

ikz

' '2 )i@cel( kz2+ k x

"I! Hcy(I+Rh)IAcel

+

I !

2Ecyky(l-Ra)Gae(ikZ)iknoG. ae(_kx )' !I

(4.91)

where

Ace =
lGh°(ikz)_ Gae(ikz )

'1Gh°(-ikz)_ Gae(-ikz )

(4.92)

Bce :

Gh°(ikz)_ Gae(ikz) L
,I-Gh°(-ikz ) Gae(-ikz)_

(4.93)

A = iAINote that the two bars above and B denote a matrix. Furthermore,

and IBI are the determinants of the matrices A and B, respectively.
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!

Evaluating Equations (4.15) and (4.49) at s= _ikz, one gets

, , 1

Gae(ik z) = Gae(-ikz ) = I + aa (4.94)

, , 1

Gh°(ikz ) = Gh°(-ikz ) = (1 + ah}k (4.95)

! I

The functions Gae($ikz)_ and Gh°($ikz)_ will be defined in section D.

°isIt is easy to show that Cea is proportional to k-1, while dh

proportional to k-1/2 Furthermore note that both Ce and o
" ' a dh are

functions of Hcy and Ecy. This implies that if the incident wave is TEy

or TMy pnlarized, it will excite a diffracted field that has both

polarizations. In other words, there is coupling between the TE and
Y

TMy polarizations, which was not the case in Chapter Ill where the

direction of propagation of the incident field was normal to the edge

(z-axis). In order to show that the TEy and TMy polarizations decoupled
I

for the case of normal incidence, let kz=O (e'=_/2) in Equations (4.90)

and (4.91) such that

I

iEcyky (1-Ra )
I

ce = kz=O (4.96)

a _ kx Gae(-k )kSa

-Hcy(l+Rh)

0 I

I I , ¢

dh = _ kx _ (-kx)
Gho kz=O (4.97)
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o is only
As expected, the constant Cea is only a function of Ecy, while dh

a function of H
cy"

Following the work in Chapter III, let the constant _ be defined as

done earlier; i.e.,

cos{= cos(E r + iE i) = a/sine'

0 <Re(E)< _/2

0<0' < _/2 . (4.98)

Thus, for the TMy polarization (Ey)

cos{a= aalsine' = Zs/(nosinO' ) (4.99)

and for the TEy polarization (Hy)

cos{h= ah/sine' = no/(ZssinO') (4.100)

C. PMC CASE

0

1. TMy Polarization (Ey, odd problem)

In this case, the field E; satisfies the same type of boundary

conditions as Hy in section B. Thus, the solution for Ey can be simply

obtained by duality [20]; i.e.,

_aEy(Ecy,Hcy, ,{h,no,Y o) = _(Hcy,-Ecy,{h,{a,Yo,no ) . (4.101)
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Substituting (4.67) into (4.101) yields

_ySO GaO(s)l- - Ecy (l+Ra)

I I_ /_-(S+kx)Ga°(-kx)-

÷

aO-- I | T <TKT÷

C ei(By+kz z) , y)O .

_ (4.102)

0
The constant Ca is given by

0

Ca =

I

-Ecy (I+Ra)k x

V_- (kz2+ )Ga°(-kx).

I

ikz

' '2
_-(kz2+ kx )l_col

. Ecy(I+Ra) IAc°loao(

I I

2Hcyn°ky (-ikG-e('kx )-_--_e"_-l"Rh)Ghe(ikz) !I

(4.103)

where

a 0

G.°(ikz )

ao . m

G. (-+kz) 'ifGhe(Ikz)_

|

Ghe(-ikz).

(4.104)

Bco =

m

!

Ga°(ikz).

|

-Ga°(-ikz ) he''iJG (Ikz)

|

Ghe(-ikz).

(4.105)

161



and

1

k' Ghe( ') : 1 + 6hGhe(i z) = -ikz
(4.106)

Ga°($ikz)_ and Ghe($ikz)_ will be defined in section D.The functions

Furthermore, the constant CO is proportional to k -1/2 which is not
a

0

surprising, since it was derived from d h.

Taking the inverse Fourier transform of (4.102), one obtains

1 -+i b Eso y)O
ES°(x,y,z)= _ f (s,y,z)exp(-isx) ds , T_<T<T+
Y _ -'+ib Y

(4.107)

where the path of integration is depicted in Figure 3.4.

total field E°
y can be expressed as follows:

Finally, the

Y i ~r S°(x,y,z) , y)OE (x,y,z) = Ey(X,y,z) + Ey(X,y,z) + Ey
. (4.108)

e

2. TEy Polarization (Hy, even problem)

For this polarization, the field He satisfies similar boundary
Y

e
conditions as E in section B. As in the odd TMy case, the solution for

Y

H can be obtained by duality such that
Y

_y(Hcy,_Ecy h a ^e a h
,{ ,{ ,no,Yo) = Ey(Ecy,Hcy,{ ,{ ,Yo,no)

(4.109)
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Substituting (4.40) into (4.109) yields

!

_se he(s ) Hcy
y=G_

B Vr2_-(s+k_)Gh_e(_k_)
d_l l T <T<T+

_ kSh ei(By+kz z) , y>0 .

_ (4.110)

The constant de
h' which is proportional to k-1, is given by

d e
h =

I I I

iHcyky(l-Rh)k x ikz k

! I

4_T'(kz2+ kx2 )Ghe k'_ (- x)kSh

÷

' '2 )k hI I'/_ (kz2+ kx _co

!

m--iH k (I-R)IX I

•I cy y" n', co.

I . k'Ghe( - x)k

!

F Y ?(I+R _Ra°(ik _ --_

-cy O-'- a'-, ' "z' ]
Ga°(-kx)

m

(4.111)

where

, , 1

Ga°(ikz) = Ga°(-ikz ) = (1 + 8a)k (4.112)

The scattered field Hse is obtained by taking the inverse Fourier
Y

transform of (4.110)• that is

1 =+ia _ye(s ,z)exp(-isx) dsH e(x•y•z)= _ J ,y
-=+ia

y,0

• T_<T<T+ (4.113)

where the path of integration in depicted in Figure 3.4. The last step

in this section is to determine the total field He which can be
Y
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obtained from Equation (4.43) as follows:

H_(x,y,z) = Hi(x,y,z) + _(x,y,z) + HSe(x,y,z)Y Y ,
y)O (4.114)

where Hiyand H; are given in Equations (4.42) and (4.44), respectively.

D. ASYMPTOTIC ANALYSIS

As in Chapter III, before the asymptotic analysis is performed, it

is necessary to map from the s-domain to the periodic w-domain where the

saddle point method can be applied conveniently. Thus, define w such

that

s = -Kcosw . (4.115)

Substituting (4.115) into (4.17) yields

B = Ksinw (4.116)

where it is assumed that K=K1=klsine' is real (K2=O, lossless medium).

Equations (4.115) and (4.116) are the same as Equations (3.161) and

(3.162), respectively, except that k has been replaced by K.

e

I. PEC Case, TMy Polarization (Ey, even problem)

Substituting Equations (4.115), (4.116), (3.163), and (4.5) into

(4.41), one gets
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ik'z
e z

ESe(p,_,z) -
y 2_i

J Gae(_Kcosw)I--Ecy___sine' (1-Re)

few l_(cOsw + c°s¢')Gae(Kc°s¢')

^e--I iKpcos(w-¢)dw

- i_ kSac a ie

I

0,_ ¢ _
, (4.117)

O< O' <_

where the path of integration is shown in Figure (3.9). Note that the

integrand in Equation (4.117) has the same poles as the integrand in

Equation (3.164) which are also shown in Figure (3.9).

At this point in the analysis, it is convenient to write the

expressions for the functions Ge and GO . Substituting Equations (4.116)

and (4.98) into (4.15) and (4.49) one obtains an expression for Ge

identical to Equation (3.186), while the expression for G° is the same

as Equation (3.221), except that k is replaced by K. It follows that

G_(-Kcosw) is given by (3.187), while Ge(-Kcosw)_ is given by (3.188).

o
Likewise, the expressions for G+(-Kcosw) and G°(-Kcosw)_ are given by

Equations (3.222) and (3.223), respectively, except that k is replaced

by K. The superscript a or h is attached to the functions Ga, Gh, G_,a G_

when (= (a (TMy) or { = (h (TEy), respectively.

e
Following the same procedure as in Chapter III, the total field Ey

can be expressed as follows:

Y re sw deEe(p,¢,z)=E (p,¢,z) + Ey (p,¢,z) + Eye(P,_b,z) + Ey (p,¢,z) (4.118)Y

where the incident field Ei is given in Equation (4.7) and
Y
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0¢(¢,¢')<_
Ere(p,@,z) : E A_(¢') exp[i(-Kpcos(¢+¢')+kzZ)] , O< O' <_y cy (4.119)

e

is the reflected field where Aa is given by

A_(¢') : e , _, • (4.120)
Ra(¢ ) for ¢ + >_

The contribution from the pole wae (pole of Gae(-Kcosw)) which was
S - '

ESW(
defined in Equation (3.167), is the surface wave field ye.P,¢,z).

field is given by the following expression:

This

!

ikzz
-e

Esw
Ye(P'¢'z)= (sin _ae) 112

r .ae, ae
expL-o I tws )/(2_))U(_-¢_ e)

Ecy c°s_ae i--,.wae+., /2)+sec((wae )/2_ I
• s--_n¢;+-_osiae expC-j e(¢')/(2"))Isectts , ) -¢'

-I

.(sin_ae _ cos¢,) I/2_ i#_2-#k_a Cae 4_-cos(wae/2)l

•expCiK(xcosw_ e + ysinw_e)) (4.121)
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where _ae_s was defined in Equation (3.203). Note that the superscript e

has been added to a and {. Whenthis solution is generalized to treat

o
dielectric/ferrite materials, ae in general will not be equal to aaa

The last component of the total field Ee is the diffracted field
Y

Ede which is given by the following integral:
Y

ik'z iKpcos(w-@)
e z j e

Ede(
Y .p,¢,z)= 2_i CSD P

sinw + cos{ ae

exp[-J_ e(w)/(2_))

"l_sec[(w+¢')/2) + sec[(w-¢')/2)_l-[sin{ae- c°sw)I/2

ee+ 4"4-_-kaaCa (cosw+cosd#' dw (4.122)

For large Kp, the integral in (4.122) can be evaluated

de

saddle point method. The expression for Ey becomes

using the
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Ede.
y t p,##,z) =

-e iX/4 exp[-j_e(@)/(2_))

[sin## + cos{ae) '[sin_ae- cos(h)

112
ei(Kp + k'zZ)

1 i• sec[(##+¢')12)F(-KLa +) + sec[(¢-##')12)F(-KLa-)

l!c ,)I/2 exp[_j_e (')/(2_))
. y[1 - Re)/2 [sin_ ae- cos## ##

e
where L=p for plane wave incidence, and Ca has been defined in Equation

(4.90).

I I

The functions Ge(_ikz)_ and G°(_ikz)_ which appear in Equations

(4.92)-(4.93) and (4.104)-(4.105) are evaluated next. Using the results

I

of Appendix F, it can be shown that Sl=ik z is mapped to

: _/2 - isinh-1(cotO ') (4.124)

in the periodic w-domain. Substituting (4.124) into (3.187), (3.188),

(3.222) and (3.223) yields

, e-i(_/4-e'/2)exp[je(-_)/(2_))

Ge(-ikz) = [sine,sin_e_ icose,)i/2 (4.125)
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!

Ge_(ikz)
ei(_l 4-B'12) exp(_e(_)/(2_))

, )I12(sin0 singe+ icose'

(4.126)

!

G°(ikz)
exp(_e(;)/(2_))

= (k(sine,sinsO+ icosB')) 112
(4.127)

!

GO_ (-i k z) :

expC_e(-_)/(2_))

(k(sine'sin{ °- icosO'))
112 (4.128)

where

= _isinh-l(cote ') 0 < O* < (4.129)

T+Ee,o

_e'O(T) = f t/sint dt

T+{e _O+W

(4.130)

2. PEC Case, TEy Polarization (H°y, odd problem)

The integral expression for Hs° in the w-domain is given by
Y

ik'z
e z

HySO
(p,C,z) - 2_i

O

f Gh_°(-Kcosw)sinwll iHc/ (_1ZRh)-

_o I(co_w÷co_,_°(_o_,1

I+ _Kd ° eIKpcos(w-¢)dw ,
0< ¢

ii

0< O' <_

(4.131)
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where the contour of integration r ° is depicted in Figure 3.9. It isw

important to note that the integrand in (4.131) has the samepoles

(shown in Figure 3.9) as the integrand in Equation (3.212). Thus, the

results of Chapter Ill can be used here to solve for the field Hs°.
Y

The scattered field Hs° is represented, after deforming the contour
Y

r ° to the steepest descendpath CSpD, as the sumof an integral alongw

CSDP and the contributions from the poles swept during the deformation.

The total field H°Y can then be obtained by adding Hs°yto the unperturbed

field The expression for H° becomes
• y

Hy(p,¢,z):Hy(p,¢,z) + Hr°(P'¢'Z)y + HSW(p'¢'Z)yo+ Hd°(P'¢'Z)y. (4.132)

where Hi is the incident field defined in Equation (4.42) and
Y

!

Hro(p,¢,z ) o
Y = Hcy hh(¢') exp[i(-Kpcos(¢+¢ )+kzZ)] ,

(4.133)

0
is the reflected field where AL is given by

r!

---1 for ¢ + ¢'<_ --IA_(¢') = o ¢, ¢, . (4.134)
_Rh( ) for ¢ + >_ _

The surface wave field Hsw ho
yo is a contribution of ws which is a pole of

Gh°(-Kcosw)_ and was defined in Equation (3.215). Note that the pole whs°

is captured only if _ho satisfies Equation (3.235). The expression for

Hsw is as follows:
yo
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!

-eikz z 4"2-
SW

HY°(P'C'z)= (sin _h°) I/2
ho ho @_$_o)exp_-J 1 (w s )/(2w)) U(

I- Hcy

-I

° I•cos(,'/2)cos(w_°/2) _s_n_h° - cos,,)1/2+ _ dh sinw_°

•exp[iK[xcoswhs 0 + ysinw_°)) (4.135)

where the angle _hOCshas been defined in Equation (3.234)

The integral along CSDP, which is the diffracted field H_°, is

given by

eik'zz
do
Hy (p,¢,z)= 2xi

j eiKpc°s(w-¢) exp[-J_°(w)i(2_)) co(wl2)

CSDP sinw + cos{ h° 2sin(@'/2)

.l_ec[(w-¢')/2)- sec[(w+¢')12)_l'[sin{h°-cosw) 112

°Icosw cos,,!low- 4_'_ dh

I12

exp[-J_°(¢')l(2x))

(4.136)

For large Kp, the integral along CSD P is asymptotic to a term
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containing the value of the integrand of (4.136) at the saddle point

such that

_ei_/4 expC_jh°(,)/(2_))

Hd°( _ho)(Sin_h°- cos@)112 ei(Kp + kzZ)y .p,,,z) = _p (sin@ + cos

_ _ sin(@'/2)

_ )112I-(1 + R_)/2 (sine hO cos,'
•I Hcy

-Io (cos@ + cos,')- ,r'2_/2 d h

expC-J_°(,')l(2_))

(4.137)

.

PMC Case, TMy Polarization (E;, odd problem)

As in Section C, the total field E°y can be obtained from H_ by

duality. It follows from Equation (4.101) and (4.132) that

_Ei ro ESW( d°(p, @,z) (4.138)
E;(p,,,z)-y(p,,,z) + Ey (p,C,z) + yo.P,,,z)+ Ey

where

, 0<(@,@')(_

E;°(p,C,z) = Ecy A°(* ') exp[i(-Kpcos(C+*')+kzZ)] , O< O' <_ (4.139)

o
is the reflected field and Ah is given by
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---I for _ + ¢'<_ _I
A°(@') : (4.140)

_R°(¢ ') for ¢ + ¢'>_

The surface wave field Esw
yo can also be obtained from (4.135) by duality.

Substituting (4.135) into (4.101), one obtains

I

ik z
-e z _"

ESW(
Y°'P'¢'z)= (sin _a°) I/2

i_ m|

exp{-j_° (¢')/(2,))I sec [(wa°-¢')/2)-sec {(wa°+¢')/2) I

-I

_ )_/_+ o ao I
•cos(O'/2)cos(w_°/2) (sin_ a° cos¢' _ Ca sinw s

ao
•exptiK{xcosw_ 0 + ysinw s )) (4.141)

do •

Finally, the diffracted field Ey Is given by (for large Kp)
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Ed°(p,@,z) :
Y

-e i_14 expC-J_°(¢)l(2_))

(sin@ + cos{ao)CSin{aO- cos@)
I/z ei(Kp + kzZ)

• cC(@-@')/2)F(-KLa-) - sec((@+@')/2)F(-KLa+) cos(@/2)
_Isin(@'/2)

m
Ecy(l + R°)/2 Csin{a°- cos@')• a

o (cos ,+ cos@')"I'- v"2_12 Ca
I

1/2

expC-J_°(@')/(2x))

(4.142)

4. PMC Case, TEy Polarization (H;, even problem)

As in the previous section the total field He
, y can be simply

obtained by duality such that

H;(p,@,z):Hy(p,@,z) + Hre(p'@'Z)y * HSW(p'@'Z)ye+ Hde(p'@'z) (4.143)

where

, 0<(@,@')(.

H;e( e ,)p,¢,z) = Hcy Ah( @ exp[i(-Kpcos(¢+@')+kzZ)] , O< e' <_ (4.144)

_(@') = e @,
Rh( )

for ¢ + @'<x --I
I

for @ + _'>_ I
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!

_eikzZ

HySW
e(P'¢'z)= (sin che) z/z

exp{-J) e(whse)/(2=))

Hcy cos Ehe

• sin¢,+cos{he

,)112•(sin{ he - cos¢ Ie e J_Z'cos(w_el2)k_h dh

•exp(iK(xcosw_ e + ysinw_e)) (4.146)

Hde(p,¢,z)
Y

_ei_/4 expI-jhe(_)l(2_))

cos{he)IS1"n{he- cos@)Zl2 ei(K p + kzZ)
(sine +

I I• c((¢+¢')/2)F(-KLa +) + secC(¢-_')/2)F(-KLa-)

• i -

+ V"4"Tk a_

R_)I2 (sinkhe- cos¢') I12

e (c°s_'+c°s_')_]dh
4icos(¢'12)

exp (_j_e (¢,)I(2_) )

(4.147)

In the next section, the problem of surface wave excitation will
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be considered. It will be helpful if the constants Cea'deh' Ca°and d_

are rewritten in terms of @' and e'. Thus, sustituting (4.5) and (4.6)

into (4.90), (4.91), (4.103) and (4.111) yields

e ,

Ca =

Ecy 2cos{aesine'sin@'[sinO'cos@' + icose'IAcel/IBcel )

ik8 e _ (sin2e'cos2@'+cos20 ')Gae(Kcos@, )(sin@,+cos{ ae)a

2no Hcy 2sin@'coso'Gh°(-ikcosO')

J_'_ik8e(s in20 'cos 2@'+cos 20')Gh_°(Kcos ¢')(s in @'+cos Ch°)IBce I

(4.148)

0

dh=

Hcy2Sin@'[sine'cos¢' - icose'IAcel/IBce I)

k(sin2e'cos2@'+cos2B')Gh°(Kcos@,)(sin@,+cos{h°)

2Ecy2Cos{aesinO'cosO'sin@'Gae(-ikcose')

kno(Sin20'cos2@'+cos2O' )Gae(Kcos@,_ )(sin@'+cos_ ae) IBce I

(4,149)

0
Ca

Ecy2Sin@'[sine'cos@' - icose'IAcol/IBcol)

k(sin2O'cos2@'+cos2O')Ga°(Kcos@,)(sin@,+cos_ a°)

2noHc 2cos{hesinO'cosO'sin@'Ghe(-ikcosO ')
y

k(sin20'cos2@'+cos2e')Ghe(Kcos@_ ' )(sin@ ' +cos the) IBcol

(4.150)

176



e
dh=

Hcy 2cos{hesine'sin¢'[sinO'cos¢ ' + icosO' l col/IBcol)

ik6_ _ (sin20'cos2¢'+cos20 ')Ghe(Kcos¢'_)(sin¢'+cos{ he)

2Y E 2si n¢'cos O'Ga°(-i kcosO' )
o cy

4_2"_ik6_(si n20 'cos 2¢'+cos 20 ')Ga_°(Kcos d#')(sin_ '+cos {ao)iBco I

(4.151)

E. SURFACE WAVE EXCITATION

The surface wave excitation problem will be solved following the

_I U_UU| _ UI J_ IUII leJ Ill _llO_CI £LL$ _IIQ_ I_ 9 U_ III_ _II_ _Ull_ Ul

analytic continuation. It was shown in Section F.3 that the Brewster

angle _b is given by Equation (3.299). The unperturbed incident surface

wave field (TMy or TEy) can be obtained by substituting (3.299) into

(4.7) or (4.42). One obtains an expression (TMy or TEy ) which is

proportional to

exp[-iKpcos(¢-¢b) ) = exp(-iKycos{) exp(iKxsin{) , y)O . (4.152)

Recall that (see Equation (4.98))

Kcos{ = ka = k(6 r + i6I) , (4.153)

it follows from (4.152) and (4.153) that Equation (4.152) will be

bounded as y ÷ ® , if and only if
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aI < 0 (4.154)

which is the sameresult obtained in Chapter IIio For the TMy

polarization, Equation (4.154) implies that

Im(Zs) : Xs < 0 (4.155)

On the other hand, for the TEy polarization (4.154) implies that

Im(Zs) = Xs > 0 (4.156)

Therefore, for a given surface impedance with nonzero reactance (Xs@O),

the surface wave field can have only one polarization.

1. PEC Case

Subtituting Equation (3.299) into (4.117) and (4.131) yields

ae

E;e( eik'zz j Gae(-Kcosw) i -Ecy ___sinWs

p,¢,z) : 2_i few I (cOsw + c°sw_ e)Gae(Kc°sw_e)

kae^e-I i

- i_ at'a_ let Kpc°s(w-¢)dw

O< ¢ <7

O< O' <7

(4.157)

for @' _ae ae
= Cb = 27 - ws , and
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HS°(p, _,z) =
Y

eik'zZ

2_i

f Gh° (-Kcosw)si nw I-- -Hcy

i 1

+ _ Kd_ leIKpc°s(w-¢)dw ,

O_ ) ¢_
(4.158)

O< 0 m <_

for 0, _¢_o 2_
ho

_- _- _ W s •

For Xs<O, the unperturbed incident surface wave field is

(4.!s9)

_ae = 2_ -w: e andwhere Cb

Hisw = 0 (4.160)
yo

Using the same method of analysis as in Section F.3 of Chapter III, the

total field Ee
y can be expressed as follows:

Ey(x,y,z) = ,-isw, U(@-¢iae ) + ,y,z) + _ye _P'" ) (4.161)Lye _x,y,z) tye_rsw'tx _dsw, " z'

where Ersw Edsw
ye and ye are the reflected and diffracted surface wave

fields respectively. The fields Ersw and dsw
' ye Eye can be expressed as

fol lows :
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ErSwlx coswae)/coswae ae ae _ae)ye • ,y,z) : Ecy(l + expC-J I (w s )/_) U(¢ - -s

1 I2coswaesine'(sinB'coswae + icosO' IAcel/IBcel)

_ (cos 20' + sin20'cos2w ae)

• exp (i Kr ae ae 'Lxcosw s + ysinw s )) exp(ikzz) (4.162)

EdSW,
ye _p,¢,z) =

.ae, ae,/(2_))Ecy ei_/4 exp(_j_e(¢)/(2x))exp(-d I tWs )

2(sin@ - sinw_ e)

l_e + ,a_e) + sec((@-w_e)/2)T(aae,a_eT I• - c((_+wae)/2)T(aae _I

(cos@ + cosw_e)sine'(sine'cOSWs ae + icose'lAcel/IBce I

(cos20 ' + sin20'cos2w ae)

ae 112
"(2coswae(cos¢ + cosw s )) exp(iKp + ikzZ)/V_'p (4.163)

where

2 ae)/2)= 2cos 2 e)/2) ; : n • (4.164)aae ((¢ $ w a_ e 2si ((¢-w

and T was defined in Equation (3.244). Note that the expression in

(4.163) takes into account the presence of two poles near the saddle

point.
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Substituting (4.160) into (4.158), one obtains

ik'z

HdSW e zHo
y= yo = 2_i

f Gh°(-Kcosw)sinw_ /_ Kd_ eiKpc°s(w-¢)dw
o

r w
(4.165)

0

where dh is given in (4.149), except that Hcy=O. Note that by deforming

the contour of integration r°wto CSD P, no poles of Gh°_ are crossed.

Therefore the total field H° becomes
' y

ik'z

HO HdSW e z i
y= yo = 2_i f Gh°(-Kcosw)sinw_ V_ Kd_ e Kpc°s(w-¢)dw .

CSDP

(4.166)

For large Kp, the diffracted field Hdsw
yo can be obtained by substituting

(3.299) and (4.149) into (G.13) such that

HdSW(
yo "P'¢'z) =

(_jaef. ae_/(21) )-Ecy ei_/4 exp(-J_ °(¢)/(2_))exp' -I '*s • •

noCSin¢- sinwhs°) sin(wae/2)

1/2
cose'sine'Gae(-ikcose')

- 2 ae 28
klBcel(Sin2e'cos ws +cos ')

I

•V_l_ sine sinwae exp(ikzz + iKp)/_'p'p (4.167)

where ahp° was defined in (4.164) except that "ae" is replaced by "ho".
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For Xs>O, the unperturbed surface wave field is

I

HiSW(xyo,y,z) = Hcy exp(iK(ysinwhs ° - xcoswhs°)) exp(ikzz) (4.168)

where @' = _bb° : 2_- w_0, and

Eisw = 0 .
ye

(4.169)

The total field H° can be expressed as follows:
Y

Hrsw,
H°(x'Y'Z)y = HiSW(x'Y'z)U(¢-¢_o)yo + yo tx,y,z)

+ Hdsw
yo .p,¢,z)

(4.170)

where Hrsw and Hdsw
yo yo are the reflected and diffracted surface wave

fields, respectively. The field Hrsw is given by
yo

he _ _so )nyourSW'tx'Y'Z) : Hcy tanCw_ O) exp(-J_°(Ws )/.)UC¢

m

he e ' , ho --I'
2cosw s sin (sine cosws - icose'IXcel/l_cel ) I

I

2 he)(cos2e ' + sin2e'cos ws

I

•exp(iK(xcoswhs 0 + ysinw_°))exp(ikzz) (4.171)

HdSW
The diffracted field yo can be easily obtained by substituting (3.299)

into (4.137). Thus, for large Kp (and taking into account the two poles

near the saddle point)
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hdSW.

yo tP _,z) =

-Hcy exp

2{sin_ - sinw_°)sin(w_°/2)

Ise + h°-_I
ho ho) _ sec{(¢+whsO)/2)T(aho,ap )• c[(¢-w s )/2)T(aho,a p

I! -, ho _)J
(cos@ + cosw_°)sinO'{sinu cosw s - icosO' IAcel/IBce I

I(cos28 ' + sin2B'cos2w_ °)

• cos(_12)[2cosw °(cos¢ + cosw
I

exp(iKp + ikzz)l_-p

(4.172)

where aho was defined in (4.164) except that "ae" is replaced by "ho".

Furthermore, T is the composite transition function defined in (3.244).

se becomes
Since Ecy=O , the expression for Ey

ik'z

ESe e z Gae( e C_/i eiKpc°s(w-@)dwy = 2_i J _ -Kcosw)_k6 a

£e
w

• (4.173)

The integrand in (4.173) has only one pole due to Gae but in deforming

e
the contour r w to the contour CSDP, the pole of Gae_ is not captured,

e
Therefore, the total field Ey becomes

183



i k' z i Kpcos(w-¢)
e z Gae( k_e ce/iEe .dsw = _j -KcoswSJ_ e

y=Lye

CSDP

dw .

(4.174)

_dsw
Furthermore, for large Kp, Eye can be obtained by substituting (3.2995

and (4.148) into (G.135 such that

EdSW(
ye .p,¢,z) :

e_ e_[_ec*IZ¢_I)ex_[J_°(""_°__(_)
Hcy

Yo[sin@- sinw ae)

F(-Kpa; e) [2coswhs° (cosw ae +cos¢)) I/2 Gh°(-ikcose'5

= 2 ho + cos20,)
IBce I(sin20'cos ws

!

•J_l< 2cos(@/2) cose' exp(ikzZ + iKp5/v_'p
. (4.175)

where aae
p was defined in (4.1645.

2. PMC Case

Without repeating the analysis of Section 1 the total fields E°• _ y

and He can be obtained from Section 1. by duality. Thus, for Xs<O, the
Y

total field E° is given by
Y

_rSW(x,y,z )-iSW'x,y,zSU(¢-@lao) + LyoE (x,y,z) = byo

_dsw

+ _yo (p,_,z)
(4.176)

ao

where ¢' = 2_ - ws and
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I

• ao ao
_isw. exp_iK(yslnw s - xcosw s 5) exp(ikzz)
tyo tx,y,z5 = Ecy

(4.177)

ErSw(x tan(waO5 , .ao, ao _-ao5yo - ,y,z) = Ecy expL'dl tWs 5/_) U(_ - Cs

li _, ii2coswaOsine,tsinB cosw s - icos IAcol/IBcol)

2 ao_
(cos2B ' + sin2B'cos ws ;

!

.exptiKtxcosw_° + ysinw_°))exp(ikzZ) (4.1785

EdSW.

yo tP ¢,z) =

-E
cy

ao ao

eiW/4 exp[.O)O(+)/(2_)) exp[_j1 (ws )/(2_))

• ao, in(waO/2)2[sin¢ - slnw s IS

,+ aoT)

ITec _ ao - ao sec[ (¢+wa° _/2)Tt aa°'aP ;I
. (¢-ws )/2)T(aao,ap 5 -

(cos¢# + cosw_°SsinO'[ sinO' c°swsaO . icosO, i_col/IBcOl71

--_1
(cos2e ' + sin2o'cos2w a°)

ao 112 i

.cos(¢12)12coswaO(cos¢+ cosws )) exp(iKp + ikzz)IC_-P •
(4,1795

e is equal to the diffracted
Since Hcy=O for Xs<O, the total field Hy
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HdSW
field ye " Substituting (4.175) into (4.109) yields (for large Kp)

HdSWHe(p,@,z) = =
y ye

-E
cy he ao (waO)/(2_) )e i_/4 exp[_jl (¢)/(2_))exp[-J I

no[Sine - sinw_ e)

F(-Kpahpe) [2cosw aO (coswhse +cosdp))I/2 Ga°(_ikcosO ')

2_, 2 ao B'IBcol(Sin _ cos ws + cos 2 )

I

•vr2"K2cos(¢/2) cosO' exp(ikzz + iKp)/vr_- . (4,180)

As shown before when Xs>O, isw 0 E , o is, Ey = = cy so the total field Ey

equal to the diffracted field Edsw which can be also simply obtained
yo

from (4.167) by duality. Thus, for large Kp (¢' = ~heCb= 2_ - wshe)

EdSW(
yo .p,@,z) :

he he
Hcy e i_/4 exp[-J_°(ch)/(2_))exp_-J I (w s )/(2_))

Yo[sin@ - sinwaO) sin(wshe/2)

F(-Kpa_ O) [2coswhse (cosw_ 0 +cos@)) I/2. cosO' sine'Ghe(-ikcosO ' )

kVBcol(Sin20'cos2w_e +cos20')

I

•vr2K sine sinw_ e exp(ikzz + iKp)/4"p-p (4.181)
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Furthermore, for the TE
Y

be obtained by duality.

that

polarization I the total field He likewise can
y'

It follows from Equations (4.161) and (4.109)

isw U ¢-_e ) + ye yeHy(x,y,z) = Hye (x,y,z) ( HrSw(x,y,z) + HdSW(p,_,z) (4.182)

where

I

HiSW(xye,y,z) : Hcy exp[iK(ysinwhse - xcoswhse)) exp(ikzZ) (4.183)

is the incident field, and

Hrsw, he., he , .he. he _e)ye _x,y,z) = Hcy(! + cosw s )/cosws expL-d I {ws )/_) U(¢ -

i!he he
2c°SWs sin0,_sinO,cOSWs + icosO, iAcol/iBcoi)--I I

, 2 he) ](cos2B ' + sin2B cos ws _

I

•exp[iK[xcoswhs e + ysinwhse))exp(ikzz) (4.184)

is the reflected field. The last field component in Equation (4.182) is

given by
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HdSW,
ye tp,@,z) =

ei_/4 exp[_j_ e ' jhe,whe,.Hcy ((h)l(2_)) expL- I t s )i(2_))

2[sin@ - sinw_e)

17e _ + he sec [(¢_w_e)/2)T(ahe,a_eTi
c[(¢+w e)/2)T(ahe,ap ) +

I!
D

(cos¢ + cosw s )sinO'[sinO'cosw e + icosO, i /iBcol )

I(cos20 ' + sin20'cos2w_ e)

[2cosw_e(cos@ + coswhse))I/2• exp(iKp + ikzz)/J'p- . (4.185)

F. RELATIONSHIP BETWEEN THE (Ez, Hz) AND THE (Ey, Hy) FIELDS

In Chapter III, the solution of the canonical problem was expressed

in terms of Ez and Hz fields, while in Chapter IV, the normal fields Ey

and Hy were used, It is necessary to know how to transform from one set

of fields to the other in order to use both solutions together,

It is shown in [45] that if all the field components have the same

exponential z dependence exp(-ikzcosO'), then, all the fields can be

expressed in terms of Hz and Ez as follows:

÷ ^ 2

E(x,y,z) = vx[Vx(zEz) + ikno(ZHz))/K (4.186)
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_(x,y,z) : Vx[Vx(zH z) - ikYo(ZE z))IK2 , (4.187)

As mentioned in Section B.3, it is shown in Appendix I that the

fields components Ex, Ez, Hx and Hz (in the s-domain) can be expressed

in terms of Ey and Hyo The expressions for these fields components are

given in Equations (4.69)-(4.72). It is more convenient to write these

equations in the periodic w-domain. Thus, substituting (4.115) and

(4.116) into (4.69)-(4.72) yields

Hz(-Kcosw,y,z)-

sin O'[cos O'sinwHy (-Kcosw,y, z)+YoCOSWEy (-Kcosw, x,z)]

1- sin20'sin2w

(4.188)

Ez(-Kcosw,y,z)=

sin e'[cos e'sinwEy (-Kcosw ,y,z)-noCOSWHy (-Kcosw, x, z)]

1- sin20'sin2w

(4.189)

Hx(-Kcosw,y,z)=

2 ^
YoCOSO' Ey(-Kcosw,x,z)-si n O'coswsi nwHy (-Kcosw,y, z)

1 - sin20'sin2w

(4.190)
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Ex ( -Kcosw,y, z) =

-n cose'H,(-Kcosw,x,z)-sin2e'coswsinwEy(-Kcosw,y, z)o 3

1 - sin2e'sin2w

(4.191)

Note that the roots of the denumerator (1 - sin2e'sin2w) are not poles

of the above expressions. Furthermore, it will be useful for later use

to obtain expressions for the incident Hi and Ei fields in terms of the
Y Y

i Hi aretangential Ei and Hi fields. Thus assume that the fields Ez and zz z

given by

I I I

Eiz = Ecz expti(kxX - kyy + kzZ)) (4o192)

I I ' I

Hi + kzZ) )z = Hcz exp[i(kxx - kyy
(4.193)

where Ecz and Hcz are arbitrary constants. Substituting (4.192) and

(4.193) into (4.186) and (4.187) yields

Ei _(noCOS¢, i . i e'Y = Hz + cose'sin¢ Ez)/Sin , O<e'<_ (4.194)

Hi : (YoCOS¢ ' Ei - cosO'sin@' H1z)/Sine 'y z
, 0<8'<_ (4.195)
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G DIFFRACTED Ed AND d
" z Hz FIELDS

dIn this section, the diffracted fields Ez(x,y,z ) and H (x,y,z) will

be computed using the results of the previous section.

The first step is to take the inverse Fourier transform of H_ and

_ s and s. The fields Ez Hz are given in Equations (4.76) and (4.78),

respectively. In the periodic w-domain, these equations can be writen

as follows:

1
.s , _s, ..... , iKcoswx .......
nz - j nz_-_cosw,y,z) e _slnw dw (4.1_o)

r
W

ES 1 _ iKcoswx
z = _ J (-Kcosw,y,z) e Ksinw dw . (4.197)

r
W

Recall that the diffracted fields Ed and d
y Hy were contributions from a

integral along the steepest descend path which was evaluated

asymptotically by the saddle point method. Thus, substituting w=¢

(saddle point) into (4.188) and (4.189) yields

Hdz(p,¢,z):

sine'[cosO'sin¢ Hd(p,¢,z)+YoCOS¢ Ed(p,¢,z)]

1 - sin20'sin2@

(4.198)
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sinO'[cosO'sin@ Ed(p,@,z)-noCOS@Hd(p,@,z)]Y

dz "E (p,C,z):
1 - sin20'sin2@ (4.199)

The next step is to write the constants Ecy and Hcy in terms of Ecz

and Hcz so that the diffracted fields can be expressed in terms of Ecz

and Hcz only.

PEC CASE.

Substituting (4.194), (4.195), (4.123) and (4.137) into (4.198) and

(4.199), and after some rather tedious algebra, one obtains

cz Dzo(@"¢) + noHczC°Se' Dzo(¢" e(iKp+ik'zZ)

o I IEz (p,_,z)= _ 1 - sin2e'sin2@ _ (4.200)

h, I
cz Dze(¢' ¢) + YoEcz c°se' Dh2(@"¢) Kp+ik'zZ)' ze e(i

He°zl Iz _ 1 - sin2e'sin2@ _ _- (4.201)

where the subscripts and superscripts attached to the diffraction

coefficients "Dal a2 Dhl h2
t zo' Dzo' ze' Dze } refer to the following facts:

(i) "a" refers to the electric field, while "h" refers to the

magnetic field.
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(ii) "z" refers to the fact that these diffraction coefficients

pertain to the Ez and Hz fields.

(iii) "e" refers to the even case, whereas, "o" refers to the odd

case.

al a2 hl h2
The diffraction coefficients {Dzo, Dzo, Dze, Dze } can be

expressed in terms of the diffraction coefficients obtained in Chapter

Ill as follows:

Dhl-
Dda(@ ' ,)[cos@' - (cos@ + cos@')F_e]~_ze(@',@) = cos@ ye '

+ rmc2n':_n_:in_ ' ndh/A' _rl_{rnc_ # r_:_'_cel
........ _...._ _yo_ ,_,,_. _v_ .... ,,. ' 3

(A 9N9_

Dh2.@, Ddh @, ¢, )_e]
ze { ,@) = sin@ yo( ,@)[cos - (cos@ + cos@'

+ cos@ Dda" ' ~ce
yet@ ,@)[-sin@' + (cos@ + cosC')F 4 ]

(4.203)

al dh F7Dzo(@',@) = cos@ Dyo(@',@)[cos,' - (cos@ + cos@') e]

, Dda. , @, @,)_e]+ cos20 sin@ ye( @ ,@)[sin - (cos@ + cos (4.204)

Da2. ,
,o{@ ,@): cos@sin,' D_ho(@',@)[1 - (cos@ + cos@')F_ e]

da , _+ sin@ Dye(, ,,)[-cos,' + (cos@ + cos@') e]
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where the diffraction coefficients (Dda Ddh ) are exactly the sameasye' yo
d d

the diffraction coefficients (De, Do) of Chapter Ill, except that k is

replaced by K. Therefore, it follows from (3.210) and (3.242) that:

Dda
ye(¢,¢ ) =

112
ix/4 (1 - Re)/2 [(sin_ae-cos@)(sin{ae-cos@')]

-e a

(sin@ + cos_ ae)

ae
.exp(-(J 1

ae @'(@)+Jl ( ))/(2_))'(sec(B+/2)F(-KLa+)+se(B-/2)F(-KLa-))

(4.206)

Ddh(@,¢ ') :
yo

i./4 (1 + o-e Rh)/2

112
[(sin_h°-cos@)(sin_h°-cos@ ')]

ho
(sin@ + cost )

•expC-(J_°(@)+J_°(@'))/(2_))-Csec(B-/2)F(-KLa-)-se(B +/2)F(-KLa +))

.cos(C/2)/sin(@'/2) (4.207)

where the subscript "y" refers to the Ey and H fields.

4The functions { e}i=l, which do not depend on the angles of

observation (@,e), are given by

_'_e ',0' _e+ cos(@'/2)sin(@ )F_ e(@ )= cos@'F 2cos20 ' (4.208)

_'ce ',0' _e+ 20 , ,_ceF2 (@ )= cos¢'F cos sin¢ r4 (4.209)
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ce ¢, F_e F_e , _,I_3 ( ,e')= - cos¢ /sin(/2) (4,210)

, , ce_ ¢,F_e_4e(@ ',e ): sin¢ F3 cos (4,211)

where

ce
F1 (¢',e'): sine' [sine'cos¢' icose' IAce I/IBce l)/(l-sin2e'sin2@ ')

(4.212)

F_e(¢ ',e')= sine' [sine'cos¢' + icosO'IAcel/IBcel)/(l-sin20'sin2¢')

(4.213)

ce _' ,0'F2 ( )=

sine,cos{ae(sin(h,+cos{hO)exp[[j_o(¢,)_j_e(¢,)]/(2_))

(1-sin20'sin2¢')klBce I (sin@'+cos_ae)(l+sine'cos{ ae)

• _ [(sin{ae-cos¢')/(sin{h°-cos¢'))I/2/sin¢ ' (4.214)

ce ,
F4 (_ ,e')=

2sin(¢'/2) (sin@'+cos{ae)exp[[j_e(¢')-J_°(¢')]/(2_))

(l-sin20'sin2¢ ')klBcel(sin@'+cos{ h°)(l+sine'cos{ h°)

• _ [(sin{hO_cos¢,)/(sin_ae_cos¢,))I/2/cos ({ae) . (4.215)
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Note that for a given @', O' and {, the functions {Fce 4}i=1 are fixed,

which is very helpful when the diffraction coefficients have to be

computed.

PMC CASE.

The diffracted Edez and HzdO fields can be simply obtained by duality

from the results given for the PEC case, that is

I___E Dal(¢ ' ¢) + noHczCOSB' Da2(@',@__ I

cz ze ' ze e(iKp+ik'zZ)

Ede(p,_,z) =

z 1 - sin20'sin2@ _ (4.216)

,, ,_ ,TI1 Hcz +YoEczc°se'DZO(¢ ' e(iKp+ik'zZ)

Hz (p,,,z)= _ 1 - sin2e'sin2¢ ,G" (4o217)

where

Ddh, @,
Dal(¢"¢)ze : cos¢ ye t ,_)[cos@' - (cos¢ + cos¢')F_ O]

+ cos20'sin@sin¢ ' Dda( ,yo. @ ,¢)[I-(cos¢ + cos@') _c°"3 ] (4.218)
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= -sine Dda(_',_)[cos¢- (cos_+ cos¢')_°]

_CO
,¢)[-sin@' + (cos¢ + cos¢')F 4 ] (4.219)

hl ¢, da ¢',¢)[cos¢' (cos¢ + cos¢')F_ °]Dzo( ,¢) = cos_ Dyo(

+ cos2e'sin¢ Ddh( ,
ye.¢ ,¢)[sin_' (cos_ + cos_')F_ °] (4.220)

,¢.)- ,.,.eA.c_,,¢,DdarA,, _r ! _ (,'oc¢_ cos¢'_c°l
""_" .... yo _" '"" " _ '3

-dh. , @,sin_D;e{_,_)[cos + (cos_+ cos_)F_°] (4.221)

Ddh , da ¢, ,{aeye(@, ¢ ,_he) = Dye(C, ) (4.222)

da , dh ¢, ,{hoD;o(¢,¢ ,{ao) : Dyo(¢, ) (4.223)

~co ¢, = _e(¢,,e,,Eho {ae)Fi ( ,e',Ea°,E he) , i=1,2,3,4 . (4.224)
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CHAPTERV

DIELECTRIC/FERRITEBISECTIONPROBLEM

Recall that whenthe solution of the dielectric/ferrite bisection

problem (even and odd) was being discussed in Chapter II, it was

mentioned that this problem was still fairly complicated. In order to

simplify the problem, the thin, grounded dielectric/ferrite slab was

replaced by an impedancewall. In this chapter, two different ways of

modifying the solutions obtained in Chapters Ill and IV will be shown.

The first approach is to try to obtain a value for Zs from the

parameters describing the dielectric/ferrite slab, i.e., d, _r, _r.

This approach applies to thin dielectric slabs (a more specific

condition on how thin will be given below). The second approach is to

modify the solutions obtained in Chapters Ill and IV, so that the

geometrical optics fields are the exact fields which can be obtained by

applying the exact boundary conditions to the grounded

dielectric/ferrite slab.
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A. FIRSTAPPROACH

In order to obtain the value of the impedanceZs assumethe

geometry is as depicted in Figure 5.1 where a dielectric/ferrite slab

above a perfectly conducting electric or magnetic plane is shown.

Following the sameprocedure as in [21,46], it can be shownthat if

a dielectric/ferrite slab of thickness d/2 as shownin Figure 5.1

satisfies the condition

kdl2 INI<< I (5.1)

where N, given by

N = (_rgr)1/2

(5.2)

X
PEC OR PMC

z x

Figure 5.1 Grounded Dielectric/Ferrite Slab.
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is the index of refraction, then Zs can be approximatly found as

fol lows :

(i) TEz polarization (Hz)

n° 2 d

Zs _-i Cr (N -1) k 2 (even case)
(5.3)

2 n o

Zs _ i (Er_l) kd
(odd case) (5.4)

(ii) TMz polarization (Ez)

1 -i 2 d

_s = Ys " noUr (N -l)k _ (even case)
(5.5)

1 i 2

Tss = Ys " no(Ur-1) kd
(odd case) (5.6)

(iii) TEy polarization (Hy)

1 -i 2 d

Tss = Ys " noUr (N -1) k _ (even case)
(5.7)

1 i 2

Tss = Ys _ no(u -1) kd
r

(odd case) (5.8)

(iv) TMy polarization (Ey)

no 2 d

zs - -i (N-1)k (even case) (5.9)

i2n°

Zs " (Or-l) kd
(odd case) (5.10)
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Recall that the final objective of this study is to obtain a

solution for a thin dielectric/ferrite half-plane. As shownin Chapter

II, this can be accomplished by adding the solutions of the even and odd

bisections. The validity of this approximate representation for a thin

dielectric/ferrite sheet (by an equivalent impedanceZs) can be

established [17] by comparing the corresponding reflection and

transmission coefficients (obtained by susbstituting Equations

(5.3)-(5.10) into (2.11) and (2.12)) for a plane wave incident on a

sheet of infinite extent, with the expressions obtained by application

of the exact boundary conditions. It is found [17] that the results

agree provided that Equation (5.1) is satisfied.

B. SECONDAPPROACH

As stated above, the second approach is to modify the solutions of

Chapters Ill and IV, so that the geometrical optics field is exact.

This implies that the diffracted field has to be modified also in order

to obtain a continuous total field at the shadowboundaries.

Thus, a modification of the reflected geometrical optics field will

be considered first. This will be followed by a modification of the

diffracted field component. Finally, the expressions for the surface

wave field (excited by a plane wave incident on the even and odd

bisections), reflected surface wave field, and diffracted surface wave

field will be modified.

It is well knownthat an infinite numberof surface wave modes

(even and odd) can exist in the dielectric/ferrite slab [21] with all

the modes, but one, having a lower frequency cutoff. The only mode
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without lower frequency cutoff is the lowest order even mode. In this

second approach, it will be assumedthat the dielectric/ferrite slab

parameters are such that only the lowest order even mode(TE and/or TM)

can exi st.
d

For example, for a lossless dielectric slab, the values of-_ at

cutoff for both TE and TMpolarizations are given by [21]

d n

--X= 2(_r-1_I/2j n : O, I, 2, 3, ... (5.11)

where _ is the free space wavelength, cr is real and ur=l. The even

integers refer to the even modes, while the odd integers refer to the

odd modes. Thus, if

d 1

0 <-_ < 2(_r_l)t/2 , (5.12)

only the lowest order mode can exist.

Note that an important assumption is being made here in treating

the diffraction problem from a dielectric/ferrite half-plane. Since the

solutions obtained in Chapters Ill and IV are being modified in order to

treat the dielectric/ferrite half-plane problem, it is assumed that the

dielectric/ferrite half-plane has only one equivalent diffracting edge

instead of the two geometrical edges at the end of a half-plane of

finite thickness. This assumption is found to be valid as long as the

dielectric/ferrite half-plane is less than one quarter wavelength inside

the dielectric/ferrite medium.
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I. Modification of the Reflected Geometrical Optics Field

It was shownin Chapters Ill and IV that the unperturbed reflected

field can be written as follows:
!

u'_r(p,¢,z)= v R(¢ ) e-iKpc°s(¢+¢') eikzz' (5.13)

where R(@') is the Fresnel reflection coefficient of an impedance wall,

!

and kz=O , K=k for the special case of normal incidence.

It is easy to show that an expression similar to (5.13) is obtained

for the geometry of Figure 5.1 if the exact boundary conditions are

applied. It is shown in Appendix J that the reflection coefficients for

the TEz, TEy, TMz and TMy polarizations can be obtained by the

Transverse Resonance Method. Note that the reflection coefficients

obtained in Appendix J are referred to the x-z plane.

It follows from Appendix J, that the reflection coefficients of

Figure 5.1 (referred to the x-z plane) for the different polarizations

can be expressed as follows (e-imt time convention):

EVEN Reflection Coefficients

sin@' - _;I ye(@,,O,)/sinB,

e')=
sin@' + _;i ye(@,,O,)/sinB,

-ik¢(¢',0') Hy 0<0'<_e ; (),

(5.14)

:

sin@' - CrI ye(@',O')/sinB'

-1 @',B'sin@' + _r Y _ )/sinO

-ik¢(¢' Ye ,0') ; (E), 0<0'<_

(5.15)
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_(_',e'=./2) =

sin@' - _1 ye(@.,e,=_12 )

sin@' + ._1 ye(¢,,B,:_/2 )

-ik_(¢'.o'=_/2)
e

(E_), B'=_12

(5.16)

_(¢',9'=_12) =

-I ye(@,, 0.:_/2 )sin@' - cr

sin@' + c-1 ye(@, O'=x12)
r

-ik¢(¢' .e'=_12)
e

(H_). e'=_12

(5.17)

ODD Reflection Coefficients

_(@ ,e'):

sin@' - UrI y°(@'.e')Isine'

sin@' + .;i yo(@,,O,)/sinO,

-ik@(@' .O')
e ; (H;), O<O'<_

(5.18)

_o(@,,e,):

-I .e' e'sin@' - mr yo(@, )/sin

sin@' + c"1 y°(@'.O')/sinB'
r

-ik@(@' .e')
e ;(Ey), O<B'<_

(5.19)

_o(@,,e,=_12) =

-1 ,O'sin@' - Ur yo(@, =_12)

sin@' + u;1 yO(@,,O,=_/2 )

-ik@(@' .e':xl2)
e

(E_), B':_12

(5.20)
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_o
Rh(_',0'=_/2) =

¢rlsin##' - - y°(¢',B'=_/2)

sin@' + ¢-I yo(¢,,O,:x/2 )
r

The expressions for ye, yo and _ are such that

2 2 2 2 112
ye(¢',O') :-i[N-cos O'sin 4#'-cos _']

I 2 2 2, I12•tan [ -cos O'sin @'-cos ] k

-ik¢(@',e':_/2)
e

(H_), e'=_12

(5.21)

(5.22)

0 (_, , 2 2 2(_I 2([},112X ( ,0 ) = +i[N -cos O'sin -cos ]

-- 2 2 2¢, 2 , I/2 -_I
•cot [N -cos O'sin -cos ] k

and

¢(@',0') : dsinO'sin¢'

(5.23)

(5.24)

where N is the index of refraction and it was defined in Equation (5.2).

The reflection coefficients defined in Equations (5.15), (5.19),

(5.14) and (5.18) are shown in Figures (5.2)-(5.5), respectively, for

0'=_/6, d/2=0.025_ , and for the following values of _r and _r:

(1) _r = 2.(1+ i0.05)

(2) Cr = 3.(1+ iO.O)

(3) cr = 3.(1+ iO.l)

(4) cr = 3.(1+ i0.05)

(5) cr = 4.(1+ i0.1)

Pr = 1.(1+ iO.O)

Pr = 1.(1+ iO.O)

Pr = 2.(1+ i0.1)

_r = 4.(1+ i0.05)

Pr = 4.(1+ i0.1)
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Note that the reflection coefficients shown in Figures (5.2)

through (5.5) can be controlled (magnitude and phase) by varying the

values of cr, _r and d. The reason for referring the reflection

coefficients to the x-z plane is because the edge diffracted field from

the dielectric/ferrite half-plane is assumed to originate from an

equivalent edge located half way between the two geometrical edges of

the half-plane of finite thickness.

Since the geometrical optics field has been modified, the

diffracted field has to be modified also to have a continuous total

field at the boundary _=_-@, where the reflected field becomes

discontinuous. First, the diffraction coefficients (for plane and

surface wave incidence) and the surface wave launching coefficients for

the 2-D (normal incidence) impedance bisection problem will be modified.

In Section C, the more general 3-D results obtained in Chapter IV will

also be modified, however, unlike the 2-D case, a combination of the

first and second approaches will be used.

2. Diffraction Coefficients for the Normal Incidence Case (e'=_/2)

Recall that the diffraction coefficients Dd and Dd obtained in
e o

Chapter Ill are a function of _, which is related to the normalized

impedance or admittance as shown in Equations (3.96) and (3.156). The

N

goal of this section is to find an equivalent { for the
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dielectric/ferrite slab depicted in Figure 5.1. Unlike _, the new

will be a function of ¢' and 0'.

In order to obtain the new function {, note that near the boundary

¢=_-@' the diffraction coefficients Dd and d
' e DO for the impedance

bisection problem (see Chapter Ill) are equal to

I-1-Re,o-]
Dd,o(¢'_-_'e ,¢#',0'=_/2) = I_" 2 - sign(_) + CTe'° (5.25)

where CTe'° is a contin,,ous term at the bo,,ndary ¢=_-¢' and

_=¢+_'-. (5.26)

The sign that _ takes on both sides of the shadow boundary is depicted

in Figure 5.6. Note that Re,o, defined in (3.20), is the Fresnel

reflection coefficient for an impedance wall.

Furthermore it is easy to prove that Dd and d' e Do satisfy the Lorentz

reciprocity theorem, that is [47]

Dd Dd (¢' ¢) , 0 < (¢,¢')< _ (5.27)
e,o(_'_') : e,o '
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Figure 5.6. Sign of _ near the reflection shadow boundary.

Now, let De and DO be the even and odd diffraction coefficients for the

dielectric/ferrite bisection problem, respectively. These two

diffraction coefficients also satisfy Equation (5.27). In addition to

that, they satisfy an equation similar to (5.25), that is

I_7,o(+-,,-+',+',_'::/_1: I_.7 sign(T) + CTe'° (5.28)

where Re,o is the reflection coefficient defined in the previous section

and _Te'° is a continuous term at the boundary ¢=x-¢'.
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The first step in finding the function _ is to define a new

function R'de,° which assumesthe value of Re,o at the boundary ¢=x-¢',

that is

R_ee = sine' - cos_e -ik_
(¢'¢') sin_' + cos_e e

(5.29)

sine' - cos_° -ik_

_°(¢'¢') = sin¢' + cos_0 e
(5.30)

where cos_e and cos_° are defined as follows:

_e,o(@,¢',0'=_/2 ) = _e,o(¢',@,0'=_/2 ) = cos_e,°

and

Lt_r 1 ~ e,o Ez

= I _r-I I y (¢,@,0'=_/2); Hz
(5.31)

_e(¢,,¢,0,=_/2) = -i[N2-1cos¢cos¢'l]I/2

•tan [cos¢cos ¢' I)I/2kd/ (5.32)

_°(¢',¢,0':_12) : iEN 2-1cos(hcos_,'l] 112

-- 2 112 --I•cot (N -ICOS¢COS¢'[) kd/2 [

I_ _I
(5.33)

213



_ d

_(@,_',e'=_) : _(@',¢,0'=_) = _ sinO'(sin@+sin¢')

d

: _ (sin¢+sin¢')

0'=_/2

. (5.34)

Note that _e and _o are functions of @ and @', while ye and yO were not.

_e_o
Moreover, y is equal to ye'°(¢',O'=_/2) at the boundary @=_-@'. For

the lossless case (N real) and for @, ¢' in the interval 0<(@,@')<_, it

is desirable that _e and 7o do not change sign. It follows that

2 i/2 kd
0 < [N - Icos_cso_'l] _ < -_- , 0 < (¢,@') < _ (5.35)

which implies that

d 1
_- < _ (5.36)

where I is the free space wavelength. Note that if Equation (5.36) is

satisfied, Equation (5.12) will also be satisfied. The above

restriction is due to the fact that a-e,o plays the role of an equivalent

normalized reactance (or susceptance) for the dielectric/ferrite slab

depicted in Figure 5.1.

Replacing Re,o by _e,o in the term (l-+Re,o)/2, one gets

and

--l._d--I I- kS --Ilei
I_ _I _ 2 _I

sine'

sin¢'+cos_ e sin¢'+cos_ "e

(5.37)
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cos (¢12)

sin(,'/2)

-ik_ cos(,'12) cos(el2)

- (l+e )
sin,'+cos _o

lei ilcos °cos(,/2)

sin(,'/2)

Recall that _d and Ddo have to satisfy Equation (5.27). however, (5.37)

and (5.38) do not satisfy these two equations, so one more modification

is necessary. The new quantities (1-_)/2 and (1+_do)/2 which satisfy

Equation (5.27), are defined in Equations (5.39) and (5.40) as follows:

and

! lilcos ille
_ _ = 2 _] sinC.+cos_e + ]_ 2

2cos(,'/2)cos(,/2)

sin ,'+cos_0

112

(sin,sin,')

sin,'+cos_ e

(5.39)

÷

L-l_e-ik_ c°s_ 0 e"f

l 2_ _l sin* '+c°s_°
(5.40)
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where

f(¢',¢) = f(¢,@') =
Isin(¢ + ¢')1

2 2 • (5.41)

The new function f(¢',¢) was introduced because the term

cos(¢/2)/sin(@'/2) in (5.38) becomes unbounded at ¢'=0. Note that the

-f
function e assumes the following values when ¢ = _ or @ = _-¢':

e =

as @+x
(5.42)

and

(5.43)

as required. Furthermore, when d is very small

(5.44)

and

-1 I-
cos_e 1+no

sin_,+cos_e '

2cos(¢/2)cos¢'/2)

sin¢+cos_ e
. (5.45)

The modifications made above may appear arbitrary, however, as

shown in Chapter VIII, they give very good results when compared with

solutions obtained using the method of moments.

Using the results obtained above, the new diffraction coefficients

D_ and D_ for the geometry depicted in Figure 5.7 can be written as

follows.
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Figure 5.7. Dielectric/ferrite bisection problem.

112
E(sin_e-cos ,)(sin_ecos ,' )]

sin _+cos_ e

eiX/4

e

;_(_)+_(_')
- 2_

(5.46)
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1/2
, [ (si n_°-cos ¢) (si n_°cos,' ) ]

sin¢ + cos_ °

- 2x
e

• B-12)F(-kLa-)° sec_ __f2)F( _k kat" )_ I

(5,47)

where

x/2-w+_ °' e

'e(w) = J _ dt

3_/2_w__O,e

(5.48)

3, Modification of Surface Wave Field Excited by a Plane Wave

(Normal Incidence)

From the results given in Chapter III, the expressions for the

sw and u_w can be completely specified in terms ofsurface wave fields ue

and ws which is the pole of G_(-kcosw), Since _e,o can be expressed

e,o the fields u_w and u_w can be represented as ain terms of ws ,

function of ws only,
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sw and sw in terms of wsThus, the first step is to rewrite ue uo

Substituting Equations (3.167) and (3.215) into (3.200) and (3.233),

respectively, yields

e ui LSW.@, e e+ . eSW(p,¢,w s) = (QE) ze _ ,ws) exp[ik(xcosw s yslnws]U(¢-_ s) (5.49)U e

sw 0 ui SW , o)exp[ik(xcoswO+ysinwO]U(@__s) (5.50)uo (p,¢,ws) = (QE) Lzo(¢ ,ws

where Lsw and Lsw
ze zo are the even and odd surface wave launching

coefficients, respectively, and

ui(QE) = ui(p=O) = ve-ikpcos (¢-¢')

I p=O
= v . (5.51)

SW SW

The coefficients Lze and Lzo are given by the following two

exp ressi ons :

Lsw. , eze{¢ ,ws) :

sin(w e )

sin¢'-sinw e

112

.exp I -iFeE_ _ e, (w:, + ((w:÷,)/(Ws)+Jl( )] • c( ')/2) sec

(5.52)
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SW@i OLoz( ,w s) :

-2COS(¢'/2)COS(WT/2)

sin¢'-sinw s°

112

• exp iiiseo o)+j7( (w_)12) w°+.'[Jl(Ws ¢')] • c[ - secLt s (p)/

where

(5,53)

2_-Ws-m
t

Jl(_) = J s-T_dt • (5.54)

W s -O&

Note that QE is the point where usw is excited, which in this case

happens to be the origin.

It is shown in [21] that for the grounded dielectric/ferrite slab

depicted in Figure 5.1, the propagation constants coS(Ws) and sin(Ws) of

a surface wave field are a function of the poles (on the proper Riemann

surface) of the reflection coefficients defined in Equations (5.16),

(5.17), (5.20) and (5.21) with ¢' replaced by the complex variable w.

In other words, for the grounded dielectric/ferrite slab of thickness

d/2, ws is the root of the equations:
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and

'' '
__I(NI-COS Ws)

tan I (N -cos ws) k =0;

I _I l_:_I

(5.55)

sinwO+ +l-"rzl +o
I er_l (N -cos Ws)

+I:I1/2 I 2 2 o z/2 z-

cot I (N -cos ws) k =0;_I I_Z_l

(5.56)

Since Equations (5.55)-(5.56) have many solutions, the roots ws have to

lie in the correct location of the periodic w-domain so they will

correspond to physically possible surface wave fields (see Figure 3.11).

Furthermore, it was assumed at the beginning of Section B, that the

parameters of the dielectric/ferrite slab (er, _r' d) are chosen so that

only the lowest order even mode can propagate. Thus, only Equation

(5.55) has to be solved for the root w_ corresponding to the lowest

sw given in (5.50) is not allowed toorder even mode, and the field uo

e is calculated in (5.55), then u_w can be easily computedexist. Once ws

e into (5.49) and (5.52)by substituting ws o

4. Modification of Reflected and Diffracted Surface Wave Fields

Excited by an Incident Surface Wave (Normal Incidence)

The procedure for modifying the reflected and diffracted surface

wave fields is the same as in Section 3. In other words, the
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expressions for the reflected and diffracted surface wave fields are

rewritten in terms of ws only, where ws is calculated by solving

Equations (5.55) and (5.56). It follows from (3.278) and (3.291) that

rsw isw, _sw, e, . , e+ . e,
ue (p,¢) = ue tQR) KeztW sj exp[iKtXCOSW s yslnWsJ]

(5.57)

rsw, Uiosw(QR RSW, o , o+ . ouo tP,¢) = ) oztWs ) exp[iktxcosw s yslnWs)] (5.58)

where we and w_ are the roots of Equations (5.55) and (5.56)S

respectively. The functions Rsw and Rsw given by
ez oz'

,sw, e i --
KeztWs) = e

ICOSW S

exp S sint dt

0

(5.59)

and

I-- 2_-2w 0 --I

RSW, O, (wT) exp S sint dtoz tWs ) = tan

0

, (5.60)

- isw(QR)are the even and odd reflection coefficients, respectively, u is

the incident surface wave field evaluated at the point of reflection QR,

which in this problem happens to be the orgin. That is,

ik(-xcOSWs+ySinWs) i
uiSw(QR) : ve : v

x=y=O

(5.61)
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The diffracted surface wave fields can be rewritten as follows:

dsw, u_SW(QE)_swdue tp,@) = Uez

eikp

(5.62)

dsw, u_SW(QE) DSWdUo {P'¢) = oz

eikp

(5,63)

where Dswd and _swd
ez Uoz are the surface wave diffraction coefficients which

can be obtained from Equations (3.318) and (3.332) such that

swd
Dez -

, e,
ie-i_/4 sintw s;

(cOSWs+COS¢)
- 2coS(Ws)(i+cos¢) --i 1/z

sin¢+sinw

• • exp

] sin_-sinws I
i i_[J_(¢)+J_(we)] (5.64)

Dswd _
OZ

ie-i_/4 sine

v_ o(cOSWs+COS4,)
I- 2cos(wO)-1IcOSWs-COS_-

1/2

-'sin@+si nw_--I• _-_o,
n¢-sinWs_ I

1/2

- ]-II-1
I_ _t

. (5.65)
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The point QE is the point of diffraction which in this particular

problem is equal to QR. Thus,

i sw
u (QE) = v . (5.66)

As in Section 3, if only the lowest order even modeis allowed to exist,

Rsw and _swdo Uoz are equal to zero.

C. MODIFICATIONOFDIFFRACTEDFIELD FORPLANEWAVEINCIDENCE

(OBLIQUEINCIDENCECASE)

As shownin Chapter IV, the diffraction coefficients for the fields

Ed and dz Hz can be expressed in terms of the two-dimensional diffraction

coefficients (obtained in Chapter Ill) and the Fi-functions. Note that

all the Fi-functions are multiplied by (cos¢+cos¢') which is zero at the

shadowboundary @=x-¢'. This means that the Fi-functions do not play a

very important role near the shadow boundary. Consequently, the two

approaches described in Sections A and B will be combined to modify the

diffraction coefficients for the case of oblique incidence.

The diffraction coefficients IDda Ddh Dda Ddh$ will be modified
Lye' ye' yo' yo "

following an approach similar to that in Section B.2. First, the

functions _e and 2o are defined as follows:
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cos_,O(_) = 6e,o(,l,,(l,', o') ,-e,o

I (_', (I,,e' )/sine';

(5.67)

where

2 2 112
_e(¢',¢,0') =-i[N-(Icos_cos_' I + Isin@sin¢'Icos 8')]

•tan -(Icos¢cos¢'l + IsinCsin@'Icos 0')] kd/ (5.68)

29, I/2_0(¢',¢,e') = i[N2-(Icos¢cos¢'l + Isin_sin¢'Icos )]

-[N _
•cot (!cos_cos_'I + IsinCsin¢'Icos o')] kdl . (5.69)

As in the 2-D case, _e'°(_',¢,o') is equal to ye,o when @=_-@'.

Next, the expressions (l+R_o)COS(¢/2)/(2sin(@'/2))and (1-R_ee)/2 are

replaced by two new functions (l+Rd)/2 and (1-Rd)/2 given in Equations

(5.40) and (5.39), respectively, except that the functions cos_ e and

cos_° which appear in (5.39)-(5.40) are replaced by the ones defined in

(5.67). Furthermore, the function $(_,@',e') given in (5.34) replaces

_(¢,¢',o'=_/2) in (5.39)-(5.40). Therefore, the new diffraction

(Dda Ddh da dh
coefficients . ye' ye' D;o' Dyo } are similar to those in

(5.46)-(5.47), except for the changes mentioned above and the fact that

k is replaced by K.
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Since the Fi-functions are multiplied by a function which is zero

at the boundary ¢=_-@', they are modified as indicated in Section A;

i.e., "the first approach". In other words, the parameters

{{ae, _ao, {he {ho} which appear in the Fi-functions will be replaced

by the newset of parameters {_ae _ao, he _ho}, _ , which are calculated

as follows:

-i (N2-1)kd
cosEhe = 2 UrSine'

i2

cos_hO - urkdsine,

, 0 < O' < x (5.70)

, 0 < O' < x (5.71)

2
-i(N -l)kd

cos_ae = _r2Sin O, , 0 < O' < _ (5.72)

i2

cos_aOm - Crkdsine, , 0 < O' < _ . (5.73)

Note that the real part of the parameter _ is restricted to the interval

0 < Re (_) < _/2,

D. MODIFICATION OF SURFACE WAVE FIELD EXCITED BY A PLANE WAVE

(OBLIQUE INCIDENCE)

Recall that the surface wave fields Eswy and HySW are expressed in

terms of the incident fields Ei and Hi In order to express Esw and sw
Y y. y Hy

in terms of launching coefficients similar to those defined in Section

B.3, it is necessary to rewrite Ei and Hi in terms of i i
Y Y Ez and Hz.
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PEC Case

Substituting (4.194)-(4.195) into (4.121) and (4.135) yields

sw ,, _ae) swa , ae IcosO ae ae
Eye(_ ¢' = Lye (¢ 'Ws ) " ' P2s Ecz + no Pls Hczl

i

ikzz
• U(¢-@ ae) e • exp [iK( ae . ae,• xcosw s +yslnw s )] (5.74)

HSWf¢, ,{ho LSWh(¢ ',w_°) [cose' ho hoyo" '@ ) = yo " P2s Hcz + Yo Pls Ecz]

l

ikzZ ho+ ho
• U(@-@hsO) • e • exp [iK(xcosw s ysinw s )] • (5.75)

The surface wave launching coefficients Lswa and Lswh are given by
ye yo

Lswa(@',wae) = LzSeWC@',we)/sine'
ye

(5.76)

LSWh @, ho sw. , o O'
yo ( 'Ws ) = Lzo t_ ,Ws)/Sin

(5.77)

where Lsw and swze Lzo were defined in (5.52) and (5.53), respectively•

ae ae ho ho
The constants {Pls' P2s' Pls' P2s } can be expressed as follows:

ae @, @, ae _cePls = -cos + (cos + cos ws ) F2

, , ae =ce
ae = -sin@ + (cos@ + cos ws ) _4P2s

ho =ce
ho = cos@' - (cos@' + cos ws ) FIPls

ho ho _ce
P2s = -sin@' + sin@'(cos@' + cos ws ) _3

where the functions {_e I were defined in Chapter IV.

(5.78)

(5.79)

(5.80)

(5.81)
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ae and w_° which appear in the launchingTheconstants ws

iLswa swh
coefficients Lye ' Lyo I are the roots of the following equations:

e, ae O' O' (5.82)sinw_e + e;1 y _ws , )/sin : 0

• ho -1 o ho 8')/sinB'slnWs + Ur y (ws , : 0 (5.83)

where

2 2 2 2 I12
ye(w,8') = -i[N -cos 8'sin w-cos w]

I CI
2 2 2 1/2

• tan [ -cos O'sin w-cos w] (5.84)

y°(w, B') i IN2 28, 2 2 I/2= -cos sin w-cos w]

I_ 2 28, 2 2
• cot [N -cos sin w-cos w] (5.85)

The constants {_e =ca =ca mce' _2 ' r3 ' r4 } can be modified in two ways.

The first approach is the same as in Section C, which is to calculate

the parameters {_ae, {ho I from Equations (5.71) and (5.72). The second

approach is to express {_ae, {ho} in terms of {w_ e, w_°} which are the

roots of (5.82)-(5.83). The latter approach is considered to be more

accurate.
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PMC Case

By duality, it follows that

 wa,aO Icosoao ao Iyo ( ,O',{a°) = Ly° ( 'Ws P2s Ecz + Pls no

I

•u(,-$a°)•e exp _Ktxcoswa°+YSinW_°) (5.86)

where

Hsw , {he) = LSWh (¢ he I--he he e' z- Iye (¢ ,0', ye "Ws ) P1s Yo Ecz + P2s cos Hc

_P

!

" U(0-¢ a°) • e exp iK(xcosw e + ysinw_e) (5.87)

Lswa ao swh- ho
,ws ) Ly0 (@ ws )yo (¢' : ', (5.88)

LSWh he swa ae
ye (¢"Ws) = Lye (¢', ws ) (5.89)

paO
ls : -cos¢' + (cosw_ ° + cos¢') _co"I (5.9o)

paO
2s : -sine' + sin¢'(cosw a° + cos¢') _o (5.91)

phe , __co
ls : cost' - (cos¢ + c°sw_ e) _2 (5.92)

phe : ¢, cosw_e) _o2s -sine' + (cos + (5,93)
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ao he are the roots of the following equations:Theconstants ws , ws

sin whe + _;1 ye he ,(ws ,9 )/sine = 0 (5.94)S

0 ao
sin wa°s + c;I Y (Ws ,e')/sine' = 0 . (5.95)

Again, the constants o, "2 ' "3 ' } can be modified in two ways.

That is, one can obtain {_ao, _he} from (5.70) and (5.73), or one can

first express {_ao, _he} in terms of {wa_, wh_} which satisfy Equations

(5.94) and (5.95).

E. MODIFICATION OF REFLECTED AND DIFFRACTED SURFACE WAVE FIELDS

(OBLIQUE INCIDENCE)

Since the expressions for the reflected and diffracted surface wave

he ao ho
fields are given in terms of {w_e ws ws ws } only (see Chapter IV)

it is very simple to modify them. The only modification that is needed

is to let the constants w_e, w_°, w_e and w_° be the roots of Equations

(5.82), (5.83), (5.94) and (5.95), respectively. This is the same

procedure that was followed in Section B.4 for the special case of

normal incidence.
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CHAPTERVl

THEDIELECTRIC/FERRITEHALF-PLANEPROBLEM

A. STATEMENTOFTHEPROBLEM

The solutions for the even and odd dielectric/ferrite bisection

problems were obtained in Chapter V by modifying the solutions of

Chapters III and IV. As shownin Chapter II, once the even and odd

bisection problems have been solved, it is very simple to get the

solution for the dielectric/ferrite half-plane problem depicted in

Figure 2.1. It is shownin Chapter II that the total field for plane

wave excitation can be expressed as follows:

_(p,¢,z) = 1/2 _e(p,l_l,z) + 1/2 _°(p,l@l,z) sign (¢) , (6.i)

0 < O' <_

0<¢'<_

÷ ÷e
H(p,¢,z) = 1/2 H (p,l@l,z) + 1/2 _°(p,[¢I,z) sign (¢) , (6.2)

where the angles ¢,@' and 8' are shown in Figure 2.1. Note that by

combining the even and odd solutions, which are restricted to the

half-space 0 < @ < _, their sum turns out to be valid in the entire

space -_<¢<_. As mentioned before, it is assumed that there is only one

diffracting edge.
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B. GEOMETRICALOPTICSFIELD

As shownin (6.1) and (6.2), the geometrical optics fields can be

written as follows:
I

-ikpcos(¢-_') ikzz
EGO(p,_,z) e e U(_+@-@')
y = Ecy

a a
ikzz

+ Ecy 2 e-ikpc°s(¢+@') e U(_-@-@')

_e _o
Ra-R a

ikzz

+ Ecy 2 e-ikpc°s(¢-¢') e U(@'-_-¢) (6.3)

HGO,
tp,¢,z) =HcyY

_e_o
Kh+R h

+ Hcy 2

_e_o
Rh -R h

+H
cy 2

I

-ikpcos(¢-¢') eikz z U(_+¢-@ )e '

!

-ikpcos (¢+¢') ikzz
e e U(_-¢-@')

!

-ikpcos(@-@' ) ikzz
e e U(@'-_-¢) . (6.4)

To write the GO fields in standard form, i.e., in terms of dyadic

reflection and transmission coefficients, it is necessary to define a

"ray-fixed" coordinate system [2,19] which is depicted in Figure 6.1.

A

The unit vector n is normal to the surface at the point of incidence,

si is the incident unit vector, and sr is the reflection unit vector

from the point of reflection to the observation point. The unit vectors

ulM, u_, and u± are defined the following way:
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Ull

_t

U

_r

Figure 6,1, Ray fixed coordinate system used for 3D reflection and
transmi ssi on,
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AI ___ ^I

^i sx( xs )
^, (6.5)

uu: In x s I

^r ^ srS X (n x )
^r
uH : (6.6)

In x _rl

^ ^i ^i ^r ^r
u± = u n x s : u u x s • (6.7)

Note that (±) and (U) indicate vectors perpendicular and parallel,

respectively, to the plane of incidence which is the plane containing

u ,usi and n The unit vectors i
• , , ±) define an orthonormal

coordinate system for the incident and transmitted fields• Likewise,

the unit vectors (s r, u_, u±) define an orthonormal coordinate system

for the reflected field.

It is shown in Appendix K that the fields (Eiu 'r _i,r i,r), b± , Es can be

expressed in terms of the Ei'r and Hi'r fields as follows:
Y Y

Ei• = 0 (6.8)
1

S

E r

sr --0 (6.9)

Ei
Y

Ei _
n I_ x _il

(6.10)

Ei

n Hi
o y

In x ._il
(6•11)
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n Hr
oy

r _ (6.12)
El Inx _il

Er

r _ Y (6.13)
E, inx _il

In vector form, the reflected field _r can be expressed in terms of

the dyadic reflection coefficient _ such that

A r ur r = _i(QR) . R eiksr (6.14)_r(sr) = u± El + ! E!

where sr is the distance from the point of reflection QR to the

observation point. The incident field EI(QR) is given by

• i Eiz(QR)_I(QR) = ui! Ea(QR) + uI (6.15)

which is evaluated at QR. It is shown in Appendix K that the dyadic

reflection coefficient can be written the following way:

R A• ^r ! A Rl
= u! R + ui ui (6.16)

where

fl
R -

2
(6.17)

±
R

2
(6.18)
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The transmitted field can also be expressed in terms of a dyadic

transmission coefficient T such that

u± t ^i t + iks t_t(st) : EL + u! En : E (QR)-T e (6.19)

where st is the distance from the point of incidence QR to the point of

observation and

^i ^i Tn ^ ^ Z= un u u + uI uI T (6.20)

where

ma
N

T - (6.21)
2

T ± - . (6.22)

The reflection coefficients R n R± and the transmission

coefficients T _, T L are depicted in Figures 6.2 - 6.5, respectively, for

five different combinations of _r and Pr:

(1) cr = 2.(1.+i0.05)

(2) c r = 3.(i.+i0.)

(3) c r : 3.(I.+i0.I)

(4) c r : 3.(I.+i0.05)

(5) c r = 4.(I.+i0.1)

_r = 1.(1.+i0.)

Ur = 1.(1.+i0.)

Pr = 2.(1.+i0.1)

_r = 4.(1.+i0.05)

Ur = 4.(1.+i0.1)

In all five cases, 0'=_/6 and d=O.O05},.
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C. DIFFRACTED FIELD

The diffracted Hdz and Ezd fields for the dielectric/ferrite

half-plane can be obtained by adding the even and odd solutions and then

dividing by 2, that is

I Ede, 1 do
Ed(p'@'z) =_- z _P, lCJ z) +_'E z (p,J@J,z) sign(@) -_<@<_ (6.23)

Z ' '

1 Hde 1 do
Hd(p'C'Z)z = _ z (p,J@J,z) +_ HZ (p, JCJ,z) sign(@), -_<¢<_. (6.24)

In order to express the diffracted field in terms of a dyadic

diffraction coefficient, it is necessary to define a suitable coordinate

the ray-fixed coordinate system depicted in Figure 6.6. The plane of

incidence for edge diffraction, which is simply referred to as the

edge-fixed plane of incidence, contains the incident ray and the unit

vector e tangent to the edge at the point of diffraction QE. The plane
A AI

of diffraction contains e and the diffracted ray. The unit vectors Bo

A

and Bo which are parallel to the edge-fixed plane of incidence and the

plane of diffraction, respectively, are given by

^' (e ^'•,, S X X S )

,., (6.25)
B°= I;xs I

B0 =

^ ^ ;)-s x (e x
(6.26)
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Figure 6.6. Ray fixed coordinate system used for 3D diffraction.
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AI

where the unit vector s is in the direction of incidence, and the unit

^ AI ^

vector s is in the direction of diffraction, The unit vectors ¢ and 0.

which are perpendicular to the edge-fixed plane of incidence and the

plane of diffraction, respectively, are defined as follows:

,_I ^I ^I

@ =BoXS

(_= XS0

(6.27)

(6,28)

It is shown in Appendix L that

Hi
-110 Z

E i' - ,

lilp 0

(6.29)

Ei

i z

EB,O =
sinB o

(6.30)

i
Es , =0 (6.31)

Ed = 0
s

noHdz
d .

I

E¢ = sin6o

(6,32)

(6,33)

_Ed

Ed z

Bo sinBo

(6,34)
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Rewriting the diffracted field in terms of the dyadic diffraction

coefficient D, one gets
iks

eCd(s)= ;E + ;o So (6.35)

where s is the distance from the point of diffraction (QE) to the

observation point, and

E(QE) = ¢ E ,(QE) + So E OE) (6.36)

As shown in Appendix L, the dyadic diffraction coefficient can be

written as follows:

D = ¢ ¢ 1 " Bo _ c°SBo 2 - ¢ Bo c°SBo Da2 + So Bo Dal (6.37)

where

, ½1p Dhi(I,l, ,e') : ze{l@l,@',e' ) + zo(l_I,@' )sign , i=1,2

(6.38)

"d @, ½ I =ai ' O' _ai_ O'
Dai(l¢I , ,0') : Uze(l¢l,@ ' ) + zo-l@l'@" )sign , i=1,2

. (6.39)

_hi _hi _ai _ai 2
Note that the diffraction coefficients {Uze , Uzo , Uze, Uzoli=l are

defined in Equations (L.31)-(L.49) in Appendix L. Furthermore, the

!

angle of diffraction S° is equal to the angle So as predicted by

Keller's law of edge edge diffraction [11]. The latter can be expressed

mathematically as

^, ^ ^ ^

s • e = s • e . (6.40)
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Equation (6.40) is used to find the point of diffraction QE for a given

point of observation away from the edge and a unit vector s'. In some

cases this must be done by a computer search procedure as shown in [48].

D. SURFACE WAVE FIELD EXCITED BY A PLANE WAVE (OBLIQUE INCIDENCE)

As mentioned in Chapter V, the parameters of the dielectric/ferrite

half-plane are adjusted such that only the lowest order even mode can

exist. This implies that only the fields ESWyeand HSWyegiven in Equations

(5.74) and (5.87), respectively, are allowed to exist. Therefore, the

@nfml _i,rfmrm wnv_ fi:IA rmn h: :vnr:::_A _c

ESW = ½ ESW (lyl¢,'e')
y ye '

d
, lyl) _ (6.41)

Hsw 1 sw d
y = _ Hye (IYi,@, '0') • IYl _ _ • (6.42)

In general, the TEy and TMy fields have different propagation and

attenuation constants. Thus, assuming Qw is the point where the surface

waves are launched, they will propagate in different directions as shown

a h
in Figure 6.7. Note that Bw and Bw are always bigger than Bo. However,

Ba h
w can be larger or smaller than Bw depending on the parameters of the

dielectric/ferrite half-plane.
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It can be shown that, for a given point of observation and unit

vector s', one can determine the point 0w and the relationship between
I

the angles Bo and Bw from the following equation:

A' • e

_ ]1/2 (6.43)s • e = Sp • e = [cosh2(Wsl ) (s,.e)2 sinh2(Wsl )

^w .

where Wsl is the imaginary part of ws. The unit vector Sp is in the

direction of propagation of the surface wave fields from the point Qw'
A

and s is the unit vector in the direction from the point Qw to the point

of observation. That is,

^w ^w Bw ^ Bw
Sp = pp sin + e cos (6.44)
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A A A

s = p sin Bw + e cos Bw (6.45)

A

^w = ^ + y sin _ < < 3_/2 (6.46)
pp x cos Wsr Wsr , Wsr

^ ^ ^

p = x cos¢ + y sin ¢ (6.47)

where Wsr is the real part of Wso

Note that the expressions in Equations (6.41) and (6.42) are valid

outside the dielectric/ferrite medium.

E. REFLECTED SURFACE WAVE (OBLIQUE INCIDENCE)

As in Section D, only the even reflected surface wave field can

rsw and rsw
propagate in the dielectric/ferrite half-plane. The total Ey Hy

fields are given by

Ersw Ersw ae
y = ye (l¢l,w s ,e') , -_ < ¢ < _ (6.48)

Hrsw rsw he, e' ,
y = "ye (I_I'Ws ) -_ < ¢ < _ (6.49)

rsw rsw
where Eye and Nye were defined in Equations (4.162) and (4.184),

ae he
respectively. Furthermore, ws and ws are the roots of Equations

(5.82) and (5.94), respectively. It follows from either (4.162) or

(4.184) that the propagation andattenuation vectors for the incident

and reflected surface wave fields are given by

_wi wi ^wi + i wi ^wi
= kp Sp ka sa (6.50)
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for the incident field, and

_wr = kwr "wr + i kwr ^wr
p Sp a Sa (6.51)

for the reflected field, where

2 ' 2

kw = k(sin Bo cosh WslP

2 ' 112

+ cos Bo) (6.52)

I

kWa -ksin 6o sinh Wsl , Wsl < 0 (6.53)

I A A A I

sptWi = sin Bo (-x cos Wsr + y sin Wsr) + e cos Bo

< Wsr < 3_/2

^wi ^ ^
sa : -x sin Wsr - y cos Wsr

(6.54)

(6.55)

| ^ ^ |

^wr : sin B0 (x cos Wsr WsrSp + y sin ) + e cos Bo (6.56)

^wr ^ ^
sa = x sin Wsr - y cos Wsr

I

The angle Bo is depicted in Figure 6.8. It is easy to conclude by

studying Equations (6.52)-(6.57) that the angle of incidence is equal

to the angle of reflection such that

(6.57)

_p l l ^(_ i)" (-x) = cos 0w =-COS Wsr sin B0 = Spr • (-x)

l

where the angle of incidence O
W

is depicted in Figure 6.8.

from (6.58) that

(6.58)

It follows

I

8
W

!

= arccos [-coS(Wsr ) sin Bo] < Wsr < 3_/2

0 < 8' < _/2
W

(6.59)
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F. DIFFRACTEDSURFACEWAVE(OBLIQUEINCIDENCE)

The Ey and Hy diffracted surface wave fields for the

dielectric/ferrite half-plane can be expressed as follows:

EdSW( E dsw( E dsw,
Y .p,@,z) = ye "P'l@l'z) + yo _P

,l¢l,z) sign(C) , -_ < ¢ <

(6.6o)

HdSW( . dsw, . dsw
y .p,@,z) = "ye _P'l¢l'z) + "yo (p,l¢l,z) sign(C) , -_ < ¢ <

(6.61)

iEdSW .dsw HdSW dsw, are given by Equations (4.163) (4.181)
where _ ye ' tyo ' ye ' Nyo _ ' '

(4.185), and (4.167), respectively, with the modifications indicated in

Section E of Chapter V.

An equation similar to (6.43) can also be obtained for this case.

It is easy to show that

(cosh Wsl ) (_pi . e)
A

^ 2 I/2 (6.62)

sd • e : tI + (Spi . e)2 (sinh Wsl) )

where sd is the unit vector in the direction from Qw to the observation

point, as depicted in Figure 6.9.
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G. LINE SOURCEEXCITATION

Consider the geometry illustrated in Figure 6.10 showing a line

source radiating in the presence of a dielectric/ferrite half-plane. It

is assumedthat the line source is far enough from the edge so its field

can be represented by a cylindrical wave. The total field at the

observation point (P) can be expressed as the sumof the incident,

reflected, transmitted, diffracted and surface wave fields such that

u(p,_) = Ui(p,@) + ur(p,_) + ud(p,_) + uSW(p,@) . (6.63)

Note that u represents the electric field if an electric line source is

•used, or the magnetic field, if a magnetic line source is present.

REGION 1T

_ %_C._._ LINE
OBSERVATIONS' _'0- SOURCE

POINT _ _,_/0_. TO

_%..0``0, y "

REGION T _ P "_e°"\sr__<_'4'°_"q+P s'

7 / (QE)
I

THIN DIELECTRICIFERRITE _ / _ I

HALF- PLANE _KP_,..[._../ I

REGION _ .4, /_._-" `` I
_/÷_ "" I

@.,1@ "%
I IMAGE

Figure 6.10. Line Source Excitation
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Using the samenotation as in [2], the individual terms in (6.63) may

be expressed as follows:

I-- eiks i
I

ui(p)=

_ 0

Regions I and II

Region III,

(6.64)

ur(p) =

-- iks re

IoR" _,_
_ 0

Region I

Region II and Ill,

(6.65)

u_(p) =

-- °

iks1

I^T e

0

Region III

Regions I and II,

(6.66)

and

I- -I ikp

i I, , -_<_<_
U (p,¢)=ui(QE) _ D_ee(I¢,,0') + ½ D_oo(l¢,¢')sin(@)

(6.67)

where si is the distance from the source to the observation point and sr

is the distance from the image point to the observation point. The

_eeand D_ooare given in Equations (5.46) and
diffraction coefficients

(5.47), respectively, except that the L parameter becomes [11]

L _

S' p

Sl+p (6.68)

where s' is the distance from the source point to QE.
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The incident field evaluated at QEis

iks'
e

ui (OE) : Io (6.69)

where Io is an arbitrary constant.

The reflection and transmission coefficients are given by

I

= _[Re (_) + _o (_)] (6.70)

i

= _ [Re (_) _ _o (_)] (6.71)

where Re and _o are defined in (5.16) and (5.20), respectively, for an

electric line source. If the source is a magnetic line source, Re and

_o are defined in (5.17) and (5.21), respectively.

Since it is assumed that only the lowest order even mode can

propagate in the half-plane, usw is equal to

sw sw , e e nw_ U(¢-@_)u (x,y) = ½ui(QE) Lze(@ ,Ws) exp [ik(xcosw s + lylsi )]

d

IYl _ 2 (6.72)

sw
where Lze is defined in (5.52).

In Chapter VIII, where a dielectric/ferrite slab is considered, the

fields excited by the geometry illustrated in Figure 6.11 will also be

needed. As shown in [21,49], the total field is the sum of the

incident, reflected, transmitted, surface wave, and leaky wave fields.

The last two fields are pole wave contributions, so they will exist only

if the poles are captured when the original contour of integration is

deformed to the steepest descent path in evaluating the integral
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representation for u. The surface wavefield (lowest order even mode)

outside the dielectric/ferrite mediumcan be expressed as foilows:

u_W.y) = 2_i ei_/4 IO F(ws) exp l_ik[(,yI+h-d)sinWs + xcOSWs]- ],_

d
lyl>

where

nw+::Wsanw
F(Ws)=

(6,73)

kdsin(2Ws)It-an[y(Ws)kd/2] 2 --I

and

2 2. I12

Y(w s) = (N - cos ws)

(6.74)

(6.75)

Y

I LINE SOURCE

h + +

f -_ --- t
+ + d/2

d

Figure 6.11. Surface waves excited by a line source above a
dielectric/ferrite slab.
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CHAPTERVII

MOMENTMETHOD

It is crucial to ascertain the validity of the UTDsolutions

presented in the previous chapters. The geometry used to test the

validity of these UTDray solutions is a dielectric slab of finite

width, which can be excited by a line source or an obliquely incident

plane wave because the latter goemetry can be analyzed via the moment

method. A brief description of the development of the momentmethod

solution to this problem will be given in this chapter. For a more

general and complete treatment of this method refer to [50].

The technique employed here is an extension of the one developed by

Richmond[51,52] for the case where the incident field is normally

incident to the edges of the slab. In the more general case of oblique

incidence (plane wave excitation) the problem is more complicated, but

the solution proceeds in a similar manner. The dielectric material is

assumedto be linear, isotropic, nonmagnetic (U=Uo), and homogeneous

(e=constant),
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This technique is based on the integral equation for the total

field excited by a source in the presence of the dielectric slab

[51,52].

Assume that the field (_i, _i) is incident on a dielectric material

as depicted in Figure 7.1. Let (E,H) represent the total field; that

is, the field excited by the incident field in the presence of the

dielectric object. The difference between the total and incident fields

+ +S
is usually referred to as the scattered field (ES,H). Thus,

+

: _i + _s . (7.2)

m _ ÷i
Figure 7.1. Plane wave (E i,H ) incident on a dielectric object.
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It is assuemdthat the mediumexterior to the dielectric obstacle is

free space. It follows from Maxwell's equations that the scattered

field (i s, _s) maybe considered as the field generated by an equivalent

electric current J radiating in unboundedfree space, where

J =-im(_-Co) E =-ikYo(_r-1) E (7.3)

and m is the angular frequency. This current is usually referred to as

the volume polarization current.

The dielectric slab in this problem is a two-dimensional object,
-ikcosg'z

and since the incident field has an e variation, the

polarization current and scattered field will also have the same

variation along the z-axis. Except for the e-ikc°sO'z factor, this

problem is still considered a two-dimensional problem.

The scattered field Es can be expressed in terms of the electric

dyadic Green's function as follows [53]:

÷
P :o , (7.4)ES( )= ikno Lim J ge " J dA + ikY

a+O Aj-Aa o

where Aj and Aa are depicted in Figure 7.2. The area Aa, which excludes

_O ,l

the singularity of ge is called the "principal area . It becomes

infinitesimally small in the limit as its maximum chord length

approaches zero. Since the value of _ and the integral in (7.4) depend

on the geometry of Aa [53], the area Aa is assumed to be a circle here.

The electric dyadic Green's function is given by

=o i 1 Ho (1)ge = _ (_ + k-£ VV) (KI___'I) , _ _ _' (7.5)
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A| A a

÷

Figure 7.2. Polarization current J replaces dielectric object.

where

= A A A A A

I = x x +yy + z z (7.6)

K = ksine' (7.7)

a ^ a ^ ,

V = x Tx-+ y -_+ z ikz (7.8)

Substituting (7.3) and (7.4) into (7.1) yields

÷ ÷ 2

E(p) -k (or-l) Lim
=0 + ÷ ÷ ÷" ÷

f ge " E(p')dA' + (er-1) E • E (_) = El(p)
Aj-A_

(7.9)

where the dyadic term _ is equal to [53]

i A A

(7.10)
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when Aa is a circle. The integral Equation (7.9) is solved numerically

using the moment method.

The first step in the solution of (7.9) is to divide the dielectric

slab into square cells (see Figure 7.3) small enough so that the

electric field intensity is nearly uniform in each cell. This is

equivalent to choosing the pulse functions {fn(_'l_:l as the basis

functions. That is, let

N
f +, ,Ep(_') : _ Epn n(p ) p = x,y,z (7oli)

n=1

where

f .+, ]-1 in cell n- In(P ) = 0 elsewhere I

and {Epn } are unknown coefficients.

Y

I
i i l I ' I l I i

' ...----+--,-- -@-l--J--4 = x

C _'__CENTER OF m th CELL

(Km,y_) I '

(7.12)

Figure 7.3, Dielectric slab divided into square cells.
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E N
In order to obtain a system of linear equations to solve for ! pn}n=l,

it is necessary to define a set of testing functions. Here, the Dirac

N
"delta" functions {6(X-Xn)6(y-ynln= 1 are choosen as the testing

functions. This is equivalent to enforcing the condition that at the

center of each square cell, the total field must be equal to the sum of

the incident and scattered fields.

Substituting (7.11) and the testing functions into (7.9) and

enforcing Equation (7.9) at the center of each mth cell, the following

set of 3N simultaneous equations with 3N unknowns is obtained:

N

Z
n=l

{Amn Exn + Bmn Eyn + Cmn Ezn_ = Eixm , m = 1,2,...,N (7.13)

N

Z
n=l

{Bmn Exn + Pmn Eyn + Fmn Ezn} = Eiym
m : 1,2,...,N (7.14)

N

Z
n=l

i
{Cmn Exn + Fmn Eyn + Mmn Ezn_ = Ezm m = 1,2,...,N (7.15)

9

where for m ¢ n

Anm = Amn

2N

: K' {Kp(ym-Yn)

2 2

H_l)(Kp)+[(Xm-Xn ) -(ym-Yn) ] H_I)(Kp)

k,2 3p -I

ZK H_I)(Kp)_I

(7.16)

Bmn = Bnm = K'{(Xm-Xn)(ym-Yn)[2Hll)(Kp) - KpH_I)(Kp)]} (7.17)

, 2

Cmn = _, {-ik z p (Xm-X n) HI1)(Kp)} = _ Cnm
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P
mn R' I Kp(Xm-Xn)2H_l)(Kp) + [(ym-Yn )2 )2]H_I)(Kp)-= _ (Xm-X n

I

2 3

k' p
Z

(7,19)

Fmn = K' -i z (Ym-Yn) p HI (kp) =-Fnm (7,20)

Mmn = _, p3K H_I)(Kp) = Mnm (7,21)

3

_, =-i_aJl(Ka)(_r-1)/(2 p ) (7,22)

--(Xn_Xm 2 _-i_/2p = + (yn-Ym) • (7,23)

For m : n

Bmm = Cmm : Fmm = 0 (7,24)

'mm: 1>a (7,25)

_r-1 i(Or-l)

Pmm = Amm = 1 +T - 4 _Ka H 1)(Ka) + 2i 1+ K2

(7,26)

266



Note that it is not possible to obtain a closed form result for the

integral of the Hankel function over a square cell. However, a simple

solution is available if the region of integration is a circle [51]. It

has been shown[51] that the error in approximating square cells with

circular cells of the samecross section area as shownin Figure 7.4 is

very small.

Oncethe 3Nsimultaneous equations are obtained, they can be solved

with the aid of a digital computer to evaluate the electric field at the

center of each cell. Note that by inserting the appropriate equations

for the incident field, one obtains solutions for any two-dimensional

source (line source, array of line sources, plane wave) in the presence

of the dielectric slab. Furthermore, the solution approaches the exact

solution if a sufficiently large numberof cells are employed [51].

C

ASh I\

m th CELL

( Xm, Ym)

c:C>

m th CELL

c
0 s

Figure 7.4. Square cell is replaced by a circular cell of the same
area o
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Assuming that the simultaneous equations have been solved, the

scattered fields Es and s
z Hz are given by

ES(p'¢'Z)z = i(cr-l) [-_i/2)t/2(Ka)Jl(Ka)

• _ Ezn - (kz/K)(po/Pn)[(cos @ - Xn/Po)Exn + (sin@ - yn/Po)Ey n
n=1 _

!

• exp(i KPn+ikzz)/(KPn )I/2 (7.27)

HSz(p,¢,z ) :-iY ° [-_i/2)i/2(ka)Jl(Ka)(Cr-1)

i il• _ (po/Pn) sin@ - yn/Po)Exn - (cos@ - Xn/Po)E exp(iKPn + ik'zZ)

n=l
(KPn)I/2

(7,28)

where

2 2 i12

Pn = [(X'Xn) + (y - Yn ) ] ' Po = (x2 + y2)I12 , (7.29)

As mentioned by Richmond [52], in order to obtain accurate results,

the dimensions of each cell should not exceed

c 0,2

r

(7,30)

where c was defined in Figure 7.4.
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To calculate the elements of the impedance matrix, it is necessary

to evaluate the following two integrals:

a 2_ o(1)(KP'?_I : Lim J J H ) p'dp' d¢' , a > 0 (7.31)
b+0 b 0

a 2_ (1)(KI÷' +?_2 = _ _ Ho P-P'I) P' dp' d@' , p' < a < p . (7.32)
0 0

By using the integral tables in [54], the integral in (7.31) can be

easily evaluated. One gets

2

_I =_" [_ Ka H_I)(Ka) + 2i] , a > 0 . (7.33)

The integral in (7.327 can be evaluated by first using the addition

_ i I÷÷theorem for the function H 1),K,p-p',), and then integrating term by

term. After some simplification, one obtains

2_a

(1)(Kp) , a < p . (7 34)_2 =TJI (Ka) Ho
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CHAPTERVlll

RESULTSANDDISCUSSION

As stated in the previous chapter, it is important to ascertain the

validity of the UTDsolutions developed in Chapters Ill through VI. The

dielectric/ferrite'strip geometry shownin Figures 8.1 and 8.2 has been

choosen for this purpose. The fields scattered by the strip are then

calculated using the UTDsolutions as well as the corresponding MM

solutions discussed in the previous chapter. The results obtained by

these two distinct methods are shownto agree very closely, which gives

a good indication of the accuracy of the new UTDresults.

The scattering and diffraction of an object which is large in terms

of a wavelength is essentially a local phenomenonassociated with

specific parts of the object [6,7,8,10,59]. Therefore, the UTDresults

obtained for the dielectric/ferrite half-plane can be used to analyze

the strip as long as the width of the strip is generally more than about

one wavelength [10].
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X LINE SOURCE

(ELECTRIC,MAGNETIC)

OB SERVATION

J POINT (P)

Figure 8.2. Line source excitation.

The total field at a point of observation (P) is equal to the

superposition of the following field components as depicted in Figure

8.3.

(1)

(II)

(Ill) Transmitted field through the finite dielectric/ferrite strip

(IV)

(v)

(Vl)

Direct field from the source

Reflected field from the finite dielectric/ferrite strip

Edge Diffracted fields from both edges of the strip

Edge diffracted surface waves

Reflected surface waves which are subsequently diffracted by

the opposite edges of the strip.

If additional terms are needed, one can add them to the solution;

however, as will be shown in the examples, the six field components
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OBSERVATION

SOURCE _ POINT

I/IIII//I//IIIA

(I) Direct Field

OBSERVATION

POINT/

V/1/1/Ill/IliA

(11) Reflected Field

1�IliA

_OBSERVATION

pO!.._r.

(Ill) Transmitted Field

|w

!////1///////////I

A B

CE OBSERVATION

A B

(IV) Edge Diffracted Field

OBSERVATION

POINT

#I//III//IIIIA

A B

(V) Edge Diffracted Surface Wave

OURCE ._OBSERVATION

J POINT

///I/II/IIA
A B

OBSERVATION

POINT /

A B

(VI) Reflected surface waves which are subsequently
diffracted by the opposite edges of the strip.

Figure 8.3. Field components that contribute to the total field at the

observation point.
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listed above are more than sufficient for the problems considered here.

Because the total field is obtained from the superposition of the

various field components listed above, UTD provides a very valuable

physical insight into the radiation and scattering mechanisms involved.

Furthermore, the UTD solutions for the problems developed here (Figures

1.2 and 1.3) serve to extend the applicability of the UTD method to

analyze the radiation and scattering by complex structures containing

dielectric/ferrite panels. It is noted that UTD can solve high

frequency radiation and scattering problems (for which exact analytical

solutions are not available) once the pertinent UTD diffraction

coefficients are known for that problem.

In order to provide a more stringent test on the validity of the

results obtained here, the scattered field is calculated instead of the

total field. The reason for this is that the direct source field is

usually much stronger than the other field components and could possibly

conceal errors in the scattered field.
÷ -_

The scattered fields (ES,H s) are easily obtained from the total

fields (_,_) as follows:

-). -_ _.

Es = E - EI (8.1)

-)- -_ -)-.

Hs = H - H1 (8.2)

N

-_.. •

where the fields Eland _lare the incident electric and magnetic fields,

respectively, in the absence of the dielectric/ferrite strip. Most of

the results shown here will be the scattered fields, except for a few

results where the total field will be calculated.
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All the patterns shown here are calculated in the x-y plane shown

in Figures 8.1 and 8.2 where the point of observation (P), which is at a

distance p from the origin, rotates clockwise from ¢=0 to ¢=2_. Note

that for the case of oblique incidence (0'@_/2, plane wave excitation),

the field evaluated at a given x-y plane (Z=Zo) , differs from the

field evaluated at another x-y plane (Z=Zl) by the factor

exp(,ikcosB'(Zl-Zo) ). For the case of line source excitation depicted

in Figure 8.2, the distance from the origin to the line source is p'.

The dielectric/ferrite strip has a width ¢, thickness d, with a

relative permittivity Cr' and relative permeability Ur" Throughout this

chapter, unless otherwise stated, only the magnitude of the calculated

¢_^lAe ,.,411 k^ nl^_-4-^A Ae m,'.,,.vl-4,.,,e,^A k,.-,¢^_^ -J I_^,,,,4e_4,- =_,,^=,-i_ _.,=e

suggested by Burnside [2] to solve the dielectric strip problem by

modifying the solution of the perfectly conducting half-plane. This

heuristic solution does not include surface waves, reflected surface

waves, or diffracted surface waves. This solution will be referred to

as the old UTD solution. Figures 8.4-8.6 depict the total field of a

line source in the presence of a lossless dielectric strip computed by

three different methods. Note that new UTD solutions developed in this

study are the ones that were obtained by modifying the impedance

bisection solutions using the "second approach". That is, the GO fields

are the exact fields, while the diffracted fields were obtained by

heuristically modifying the impedance half-plane diffracted fields using

the UTD recipe. Furthermore, the surface wave reflected and diffracted

fields were obtained from the impedance bisection solutions by replacing

the impedance surface wave propagation and attenuation constants by the

275



i

I
• I
• I

N

0

0
I_.

0

0

J'Y • •

¢._ II ||

_J

Z II II II
(._

0

'QD v

v

e-

°p-.

e"

o

II

L

G) o

E _

e-

o

N _

-'r- o

,-- (_

o

276



0 o

90 °

180 °

MAGNETIC LINE SOURCE

- lX d • O.1},

p' = 2), 4_' = 10 °

p - 40X ¢ = 4.
r

"r " 1.

UTD

eeeeMM

.... GTD

(BURNSIDE)

Figure 8.5. Magnitude of the total Hz field for the geometry shown in

Figure 8.2,
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more accurate corresponding exact coefficients for the grounded

dielectric/ferrite slab.

It is obvious from Figures 8.4-8.6, that there is better agreement

between the new UTD and MM solutions than between the old UTD and MM

solutions. In Figures 8.4b-8.6a, where the angle of incidence is either

30 or 10 degrees, there is a big improvement with the new UTD solutions,

especially around 180 degrees, where the diffracted surface waves play

an important role. However, even in Figure 8.4a, where the diffracted

surface wave is not important, because the angle of incidence is 90

degrees, the new UTD solution seems to agree more closely with the MM

solution. This means that not only is there an improvement in the new

ll'rr_ _^1,,.I-.I^_ k^_,,_^ ^$ .l.k^ -_1,,_._^_ ^$ 4.k^ _,,_4¢_^ ,.,_,.^ ^$,1_^_.i-_ k.,,4.

UIU :)UlU(,IUII UtZ_OiU_t: UI L, II_: III_.IU_)IUII UI I_lll{_ :)UI I O_t:: In#OVl_ t_l It::_,i_ _l , UU_

the new UTD edge diffraction coefficients also provide more accurate

results than the old ones. In Figure 8.6b where the electric line

source is only 0.25X away from the middle of the slab, there is a big

disagreement between the old UTD and MN solutions, especially around 0

and 180 degrees. The reason for this disagreement is that the line

source excites two surface waves which travel in opposite directions

toward the edges of the strip (see Figure 6.11) where they are

diffracted. Since the amplitude of the surface wave is inversely

proportional to the distance of the line source from the strip, these

surface wave contributions become important for p'=0.25},. Since the new

UTD solution includes these contributions, it agrees very well with the

MM solution as shown in Figure 8.6b.

In Figures 8.7a-8.8a, the total field of a magnetic line source is

depicted for increasing values of the electric loss tangent, and for the
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case where the angle of incidence is 15 degrees. In Figures 8.8b-8.9b,

the angle of incidence is 10 degrees, and still there is very good

agreement between the new UTD and MM solutions. Figures 8.10a-8.13b

show the total field of an electric line source for different values of

the electric loss tangent, angle of incidence, and length of the strip.

As the angle of incidence becomes smaller, the diffracted surface

waves become significant. For example, in Figure 8.13a, the total field

of an electric line source is depicted without the diffracted surface

wave fields. Since the angle of incidence is only 1 degree, the new UTD

solution without the above surface wave contribution is not very

accurate, epecially around 180 degrees where the diffracted surface wave

is important. When the diffracted surface wave is added, the two

solutions agree very well everywhere, except near 180 degrees as

illustrated in Figure 8.13b. When the angle of incidence becomes

smaller, not only does the diffracted surface wave become important, but

the doubly edge diffracted field also becomes significant. The doubly

edge diffracted field is the field diffracted from the second edge after

being diffracted by the first one as depicted in Figure 8.14. This

field diffracted by the first edge at near grazing angles of incidence,

which is then incident on the second edge, is in general not a ray

optical field. Consequently, its diffraction by the second edge must be

handled carefully near the forward scatter direction. The present UTD

solution does not include this doubly edge diffracted term; however, it

will be added in the future. It can be shown [55] that as the length of

the strip increases, this doubly edge diffracted field becomes less

important.
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ui

(P)

Figure 8.14. Doubly Edge Diffracted Field.

Even though there is an improvement when the diffracted surface wave is

added, the agreement between the UTD and MM solution is not perfect due

to the absence of the doubly edge diffracted field. In Figure 8.15a,

the dielectric strip becomes lossy and the diffracted surface wave

becomes less important. However, the doubly edge diffracted field is

still important, and its absence causes the disagreement between the new

UTD and MM solutions around 180 degrees. Additional plots are depicted

in Figures 8.15b through 8.17b for three different lengths of the

dielectric strip.
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So far, the total field of a line source in the presence of the

strip has been calculated for various angles of incidence. It is

obvious that the incident field is the dominant term, and in order to

very carefully test the accuracy of the new UTD solutions, the scattered

field should be calculated instead of the total field. From now on,

only the scattered fields will be shown, unless otherwise stated. The

electric scattered field Es and the magnetic scattered field _s were

defined in Equations (8.1) and (8.2), respectively. Note that the

incident fields defined in these equations are the fields that would

exist in the absence of the strip.

Figures 8.18a and 8.18b depict the field scattered by a dielectric

for an E1z-polarized incident plane wave where @'=65 ° and 0'=45 °.strip

s

The scattered Ez field is shown in Figure 8.18a. Since 0'@90 °, there is

coupling between the Es s sz and Hz fields• Figure 8.18b shows the noHz

field, which as expected, is not zero. Figures 8.19a and 8.19b depict

the scattered Hs s
z and YoEz fields, respectively. The incident field is

Hi-polarized where _'=65 ° and 0'=45 ° Again since 0'@90 ° there is
Z ' • ' '

s s

coupling between the Hz and Ez fields. Figures 8.20-8.25 show

additional examples where 0'@90 °.

Figures 8.26a and 8.26b depict the field scattered by a strip

where the line source is at a distance of 7L and 15>,, respectively, from

the center of the strip. Figure 8.27a shows the field scattered by a

dielectric strip of length 5>,and Cr=5.0+iO.5, _r=l.0. The source is a

magnetic line source located at a distance of 15>,from the origin. In

the Figure 8.27b the source is also a magnetic line source, however, the
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strip is a ferrite with Ur=3.0+iO.3, _r=l.0. The length of the strip is

_=5_ and its thickness d=O.1},. Figures 8.28a and 8.28b depict the Hs-
z

scattered field where the incident field is a Hi-polarized plane wave
Z

The values of 4,',and O' are 45 and 90 degrees, respectively, and as

expected, in both cases the field Es is zero
Z

S .
Figures 8.29a through 8.29c show the Ez-fleld scattered by a

dielectric strip for increasing values of the electric loss tangent.

The incident field here is an Ei-polarized plane wave where ¢'=90 ° and
Z

0'=90 °.

As mentioned several times already, the total or scattered field

can be obtained by adding the different terms depicted in Figure 8.3.

In other words, UTD is a method in which rays are employed in a

systematic way to obtain the field at a given observation point. For

i
example in Figure 8.30a, there is an Ez-polarized plane wave, incident

on a lossy dielectric strip where the angle of incidence ¢' is 45

degrees and 0'=90 degrees. In order to obtain the total field, the

first four terms shown in Figure 8.3 are added together. Next, the

s
scattered Ez-field which is shown in Figure 8.30a has been obtained by

subtracting the unperturbed incident field Eizfrom the total field. It

is obvious by observing Figure 8.30a that the agreement between the UTD

and MM solutions is not good. Thus, the next step is to add more terms

to the UTD solution. The field obtained by adding the diffracted

surface wave (field component V) plus the diffracted-reflected surface

wave (field component Vl) is shown in Figure 8.30b. Note that this

field is important in the regions around 0 and 180 degrees, which is
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where the UTD and MM solutions disagree. Adding the V and VI terms to

the scattered field one obtains the field shown in Figure 8.31. As

expected, the agreement between the new scattered field and the MM

solution is much better when the various diffracted surface waves are

added. Additional results where the diffracted surface wave is

important are shown in Figures 8.32 through 8.44 for both, normal and

oblique (on the edge) angles of incidence. Note that the strength of

the surface wave excited by a line source radiating above a dielectric

slab is inversely proportional to the distance of the line source from

the slab (see Figure 6.11) as indicated by the results depicted in

Figures 4.41 through 4.44.

As stated before, the diffracted surface wave is important as long

as the dielectric strip is lossless and the incident field is near

grazing. In Figure 8.45a the scattered field of a lossless strip of

i
length _=10}, is shown where the source is an Ez-polarized plane wave

with ¢'=1 ° and 0'=90 °. The many sidelobes of the field are due to the

interaction between the edge diffracted and diffracted surface wave

fields. When the strip becomes lossy (tanSe=O.25), the diffracted

surface wave becomes insignificant and the scattered field shown in

Figure 8.45b is mostly the contribution from the edge diffracted fields.

The agreement between the UTD and MM solutions is good except in the

region around 180 degrees where the doubly diffracted field is

important, but it has not been included here. One additional example is

shown in Figures 8.46a and 8.46b where the electric line source is 20},

from the origin, _=16), and ¢'=1 °.
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Figure 8.42. s field with the diffractedMagnitude of the scattered Ez

.dsw included (see Figure 8.41)surface wave field Lz
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In Chapter II, when the dielectric/ferrite half-plane problem was

being considered, it was first broken down into two problems with

symmetric and asymmetric excitations. The problem with symmetric

excitation was referred to as the even problem, whereas, the one with

asymmetric excitation was referred to as the odd problem. Note that the

scattered field of the even problem is symmetric with respect to the

x-axis, while the scattered field of the odd problem is asymmetric with

respect to the x-axis. The diffracted field of either configuration is

proportional to the difference in the reflection coefficients between

the grounded dielectric/ferrite slab (_e,o) and the conductor (Rc=-+l).

Thus, by studying the reflection coefficients _e,o and Rc one can

predict whether the even, odd, or both diffracted fields will be the

dominant contributors to the scattered field. For example, in Figure

8.47 the scattered field is symmetric, which means that the dominant

contributor is either the even or odd scattered field, but not both. In

order to determine which is the dominant one, the reflection

coefficients for the even and odd configurations have to be examined.

For the even configuration Re=l and _e is depicted in Figure 8.48.
C

configuration R°=-i and _o is depicted in Figure 8.49.For the odd

Since _o is very close to -1 for ¢'=45 °, the dominant term is the one

corresponding to the even configuration. This can be verified by

calculating the even and odd diffracted fields which are shown in Figure

e
8.50a. When the permeability is increased to 3.+i0.3, Rd does not

o
change much, however, Rd is no longer close to -1 and one can expect the

odd diffraction coefficient to become more important. This is confirmed

in Figure 8.50b where the diffracted fields are depicted. As expected,
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the new scattered field which is shown in Figure 8.51 is no longer

symmetric. This example shows that one can predict whether the even,

odd, or both solutions will be the dominant contributors by examining

the reflection coefficients _e, _o, Rec, and Rc°.

Another application of the solutions presented in Chapters III to

Vl is in the calculation of the echo width of two-dimensional targets.

The echo width is defined as follows:

e(@) : limp+.21p_ (8.3)

where _s and Ei are the scattered and incident electric fields,

respectively. Figures 8.52 to 8.55 depict the echo width of a

dielectric strip for various angles of incidence and for both E and Hz

polarizations of the incident plane wave. In all cases the agreement

between the UTD and MM solutions is very good.

Besides the dielectric/ferrite half-plane, UTD solutions are also

directly available for the diffraction by the dielectric/ferrite

bisection problem since the former solution was actually constructed

from the latter. These solutions can be used to obtain the fields

scattered by a grounded dielectric/ferrite slab as depicted in Figure

8.56.
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Figure 8.56. Grounded dielectric slab.

This report has examined the scattering by a thin

dielectric/ferrite half-plane. The half-plane solution was obtained by

appropriately combining the solutions to the even and odd

dielectric/ferrite bisection (DFB) problems. Both normal and oblique

(or skew) incidence on the edge was considered and it was shown that for

oblique incidence there is coupling between the TE and TM fields.

However, for the special case of normal incidence, the TE and TM fields

become decoupled. As stated in Chapter I, this is an important

canonical problem for the UTD, since it extends the UTD edge diffraction

solutions from perfectly conducting to penetrable geometries.

In order to obtain the solution to the DFB problem, the impedance

bisection problem was considered first. The impedance bisection problem
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(plane wave incidence) was solved rigorously via the Wiener-Hopf

technique. The Wiener-Hopf equation was obtained by Jones' method [32],

and the Wiener-Hopf factorization was accomplished by following a

procedure similar to Weinstein [37]. The other crucial step in the

solution of the Wiener-Hopf equation is the decomposition of a function.

There is a formal decomposition formula [34], however, for the problems

considered here, the functions were simple enough so that the

decomposition was achieved by inspection.

The solution for the case of surface wave incidence can also be

obtained by repeating the same procedure described above for the plane

wave excitation problem. However, there is a simpler way (which was

used here) of obtaining the former solution from the latter one; namely,

the angle of incidence is simply extended to the complex domain, i.e.,

Brewster angle. From this second solution, the surface wave launching,

reflection, and diffraction coefficients were obtained.

It was important to cast the impedance bisection solutions into the

UTD form involving reflection and transmission coefficients, and also

the surface wave propagation and attenuation constants. Once this was

done, the DFB solutions were obtained in the UTD format from the

impedance bisection solutions as described in Chapter V. These UTD

solutions are valid for illumination by ray optical plane and

cylindrical waves, and also by a surface wave.

All of the UTD results shown in this chapter agree very well with

the MM-based solutions, except for the case of grazing incidence and

aspects near forward scatter, where the doubly edge diffracted field
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becomesimportant. This doubly diffracted field can be obtained by

following a procedure similar to that in [55]. That is, the singly

diffracted field (diffracted by the first edge) incident on the second

edge can be represented as a sumof ray optical wave componentsbecause

it is non-ray optical there, and hence, its diffraction at the second

edge cannot be obtained directly via the use of the above UTDsolutions.

However, the diffraction of each of these ray optical componentsby the

second edge can be calculated by the UTD. This work is worthy of future

investigation.

Another area of future research is to extend the solution to the

problem of the diffraction by an impedancewedgewhich was initially

developed by Maliuzhinets [24] in 1959. Since his solution is

restricted to the special case of normal incidence, it would be very

useful to obtain a solution to this problem for the more general case of

oblique (skew) incidence on the edge. However, it maybe very difficult

to scalarize the original vector problem as it was done here. The

problem becomeseven more difficult if one allows the surface impedance

to be a tensor, i.e., anisotropic impedancesheet, in which case an

approximate solution is usually the best one can hope to obtain.

An additional area of future research related to this work is to

extend the solutions obtained here to curved surfaces which have many

practical applications in the analysis of flush mounted antennas,

surface wave antennas and flush mountedradomesto namea few.

In order to facilitate the use of the new solutions developed here,

Tables 1 through 3 summarizethe most important results.
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TABLE 8.1

IBS SOLUTIONS

A. Plane Wave Incidence (2-D)

i. Even problem, edge excited surface wave

2. Even problem, reflected field

3. Even problem, diffraction coefficient

4. Odd problem, edge excited surface wave

5. Odd problem, reflected field

6. Odd problem, diffraction coefficient

7. Slope diffraction coefficient (even problem)

8. Slope diffraction coefficient (odd problem)

B. Surface Wave Excitation (2-D)

1. Even problem, incident surface wave

2. Even problem, reflected surface wave

3. Even problem, diffracted surface wave

4. Odd problem, incident surface wave

5. Odd problem, reflected surface wave

6. Odd problem, diffracted surface wave

Equat i on
Number

3.200

3.206

3.210

3.233

3.238

3.242

3.255

3.257

3.301

3.315

3.312

3.324

3.329

3.330
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TABLE 8.1 (CONTINUED)

Co Plane Wave Incidence (3-D)

1.

2.

3.

4.

5.

6.

Equation
Number

re

Even problem, PEC case, reflected field (Ey) 4.119

SW

Even problem, PEC case, edge excited surface wave (Eye) 4.121
de

Even problem, PEC case, diffracted field (Ey) 4.123
ro

Odd problem, PEC case, reflected field (Hy) 4.133
sw

Odd problem, PEC case, edge excited surface wave (Hyo) 4.135
de

Odd problem, PEC case, diffracted field (Hy) 4.137

Do Surface Wave Excitation (3-D)

rsw

1. Even problem, PEc case, reflected surface wave (Eye )
dsw

2. Even problem, PEC case, diffracted surface wave (Eye )

rsw

3. Odd problem, PEC case, reflected surface wave (Hyo )
dsw

4. Odd problem, PEC case, diffracted surface wave (Hyo )

4.162

4.163,
4.175

4.171

4.167,
4.172

E.

d d
Edge Diffracted Ez and Hz Fields

do

1. PEC case, Ez

de

2. PEC case, Hz

de
3. PMC case, Ez

do
4. PMC case, Hz

4.200

4.201

4.216

4.217
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TABLE8.2

DFBSOLUTIONS

A. Fresnel Reflection Coefficients

B. 2-D Problems

1. Evendiffraction coefficient

2. Odddiffraction coefficient

3. Evensurface wave launching coefficient

4. Oddsurface wave launching coefficient

5. Evensurface wave reflection coefficient

6. Oddsurface wave reflection coefficient

7. Evensurface wave diffraction coefficient

8. Oddsurface wave diffraction coefficient

Equati on
Number

5.14 through 5.21

5.46

5.47

5.52

5.53

5.59

5.60

5.64

5.65

Ca 3-D Problems

1. Edge excited surface wave,

SW SW

Eye , Eyo (plane wave incidence)

2. Edge excited surface wave,

SW SW

Hye, Hyo (plane wave incidence)

5.74, 5.86

5.75, 5.87
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TABLE 8.3

DIELECTRIC/FERRITE HALF-PLANE SOLUTIONS

Equat ion
Number

1. Reflected field

2. Dyadic reflection coefficient

3. Transmitted field

4. Dyadic transmission coefficient

5. Edge diffracted field

6. Dyadic diffraction coefficient

7. Surface wave field excited by a

plane wave (oblique incidence)

8. Reflected surface wave (oblique incidence)

9. Diffracted surface wave (oblique incidence)

10. Line source excitation

6.14

6.16, 6.17, 6.18

6.19

6.20, 6.21, 6.22

6.35

6.37, 6.38, 6.39

6.41, 6.42

6.48, 6.49

6.60, 6.61

6.63 through 6.75
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APPENDIX A

FOURIER TRANSFORM IN COMPLEX S-PLANE

In the development of the Wiener-Hopf technique, one can use the

two-sided Laplace transform or the Fourier transform because in the

complex plane both transforms are completely equivalent [32]. Here the

Fourier transform is used. In this appendix certain properties of the

Fourier transform that are relevant to the Wiener-Hopf technique are

summarized. A detailed discussion of this topic can be found in many

excellent books such as Tichmarsh [56].

Let f(x) be a function Of the real variable x. Define the

half-range functions f+(x) and f_(x) as follows:

f+(x)..= (x) x>O
x<O

(A.1)

f_(x) = x>O

(x) x>O

where the subscript (+) in the function f+(x) signifies that the

function is identically zero for x<O, and the subscript (-) in the

(A.2)
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function f_(x) meansthat this second function is identically zero for

x>O. Therefore, f(x) can be represented as

f(x) = f+(x) + f_(x) . (A.3)

Furthermore, assumef+(x) and f_(x) have the following asymptotic

behavior:

T X
o

f+(x) ~ Ae as x + - (A.4)

T+X

f_(x) ~ Be as x + -® . (A.5)

Next, let s be a complex variable such that

s :o+iT (A.6)

where o and T are real variables.

The Fourier transform of f+(x) is defined by [32]

1 ® isx 1 ® isx
F+(s) = _ I f+(x) e dx = _ I f+(x) e dx

0 (A.7)

where F+(s) is regular in the upper s-plane defined by T > T_ [32].

The above integral is interpreted as a Riemann integral [34] and it

will exist provided f+(x) satisfies certain Conditions [32,56]. Since

most of the functions in engineering applications are sufficiently well

behaved, their Fourier transforms usually exist.

Similarly, the Fourier transform of f_(x) is defined by

^ 1 " eiSX 1 0F_(s) = _ I f_(x) dx = _ I f_(x) eisx dx (A.8)

where F_(s) is regular in the lower s-plane defined by T < T+ [32].
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way:

Finally, the Fourier transform of f(x) can be written the following

1 ® isx
F(s) = _ f f(x) e dx (A.9)

m_

where F(s) is regular in the strip defined by T

inverse transform of F(s) is given by [34]

< T < T+, and the

1 -+ia -isx
f(x) = _ f F(s) e ds , T_ < a < T+ . (A.IO)

--+i a

It follows from Equations (A.7), (A.8) and (A.9) that

F(s) = F+(s) + F_(s) . (A.11)

In solving the Wiener-Hopf equation, it will be necessary to know

the asymptotic behavior of F+(x) and F_(s) which is related to the

behavior of f+(x) and f_(x) as follows [34]:

if f+(x) ~ xp as x ÷ 0+, then (A.12)

F+(s) ~ s-p-1 as Isl ÷ - in T > T_ ; (A.13)

if f_(x) ~ xp as x ÷ 0-, then (A.14)

F_(s) ~ s-p-1 as IsI ÷- in T < T+ . (A.15)
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In Chapters III and IV the Fourier transform is applied to the

scalar Helmholtz differential equation. Thus, it is important to

define the Fourier transform of the secondderivative of f(x). This is

done in [32] and only the result will be shownhere. If F(s) is the

Fourier transform of f(x), it follows that the Fourier transform of

d2f(x)
is given by [32]:

dx2

"_ l._2f (x)-I_ _ -_ = - s2C-(s) i, T. < T < T+ (A.16)

where _/is the Fourier transform operator such that

_J I ® isx
If(x)] : _ I f(x) e dx , T_ < T < T+

--w

(A.17)
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APPENDIX B

RADIATION AND EDGE CONDITIONS

In Chapters III and IV it is necessary to solve the following

scalar Helmholtz equation:

- a2 K2-J+ + f(x,y) : o (B.1)

where K is a complex constant with its real and imaginary parts

positive, and where the region of interest in the x-y plane will involve

boundaries at infinity and geometrical singularities. In order to

obtain unique solutions it is necessary to apply two physical

constraints. The first condition known as the radiation condition [57]

deals with the behavior of the fields at infinity due to real or

equivalent sources contained in a finite area of the x-y plane (for 2-D

problems). If the medium is lossy, i.e., k 2 40, the radiation condition

dictates that the fields have to vanish at infinity. On the other hand,

if the medium is lossless, i.e., k 2 = O, and isotropic [34], the

solutions of Equation (B.I) have to represent traveling waves

propagating toward infinity. Mathematically, this condition dictates

that the solutions of (B.I) have to satisfy the Sommerfeld radiation

condition given by [45]
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where

112
p = (x2 + y2)

f(x,y) = 0

It follows from Equation (B.2) that

iKp
c e

f(x,y) ~ (p)112 as p + ®

where c is an arbitrary constant.

(B.2)

(B.3)

(B.4)

Note that it was emphasized that the

sources have to be confined to a finite area of the x-y plane, however,

in Chapters Ill and IV it is assumed that a plane wave is incident on

the diffracting geometry. Thus, the asymptotic behavior of the fields

(for plane wave incidence) has to be interpreted carefully.

The second physical constraint which deals with the behavior of the

fields near geometrical singularities is the edge condition. First

introduced by Meixner [58], it insures that the total electric and

magnetic energy stored in any finite neighborhood of an edge will be

finite.

For the geometry considered in this study which is depicted in

Figure 3.1, it is difficult to obtain the edge conditions. However, as

shown in Chapters Ill and IV it is enough to know the following

informati on :
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The most singular behavior of the fields near the origin (see

Figure 3.1) is [34,21]:

Ez, Hz : O(pT)

for the tangential components (Ez, Hz) , and

Ey, Hy = O(p -1+_)

for the transverse components (Ey, Hy).

if the constant T is restricted to the domain T > O.

(B.5)

(B.6)

The edge condition is satisfied
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APPENDIXC

SPECIFICATIONOFTHEVALUEOF B = (K2 - s2) I/2

In this appendix, the double-valued function B defined by

B : (K2 - s2)I/2 (C.l)

will be uniquely specified. Recall that s is the complex variable in

the Fourier transformed domain given by

s = _ + iT (C.2)

and K is equal to

K = KI + iK2 = ksine' = (kl + ik2) sine' , 0 < e' < _ . (C.3)

It follows from Chapter I, that

KI, K2 > 0 (c.4)

and it will be assumed that the following constraint is satisfied for

analytic convenience

KI >> K2 . (C.5)

Because of the radiation condition given in Appendix B, the

double-valued function B has to satisfy the following two conditions

along the Fourier inversion path:
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and

Im (B) < 0 (C.6)

Re (B) • 0 . (C.7)

Conditions (C.6) and (C.7) will insure that the solutions of the Fourier

transformed wave equation will represent either outgoing or evanescent

waves for large IYl.

located at

s :-+K

Note that the function B has two branch points

(c.8)

To specify B uniquely, it s convenient to view the complex s-plane

as a two sheeted surface with the sheets connected along the branch

cuts. In each sheet, B is a single-valued analytic function of s. The

choice of branch cuts is arbitrary, but for the problems considered

here, a particular set of branch cuts will be defined based on the

restrictions given by Equations (C.6) and (C.7).

The branch cut of B in the s-plane is defined such that Im (B) > 0

on one sheet, which will be called the top or proper sheet, and Im (B) <

0 on the bottom or improper sheet [34]. This definition implies that

the two sheets are connected by the curve defined by Im (B) : 0 which

locates the desired branch cut.

In order to obtain the branch cut curve, it is necessary to first

write B2 as

or

2 2 2 2 2

B : K - s : (K1 + iK2) - (_ + iT) (C.9)

2 2 2 2 2
B

: (K1 - K2 - _ + T ) + 2i(K 1 K2 - _T) (C.IO)
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Next, the complex s-plane is divided by the curves Re (B2) = 0 and

Im (B2) = 0 as shown in Figures C.1 where the horizontally shaded

regions correspond to Re (B2) < 0 and the vertically shaded regions

correspond to Im (B2) < O. The unshaded region corresponds to both

Re (B2) > 0 and Im (B2) > O. Note that the Re B2 = 0 implies that

2 2 2 2

K1 - K..,, - (_ + T : 0 (C.11)

which is the equation of a hyperbola.

Im (B2) = 0 implies that

K1 K2 = aT

On the other hand, the condition

(C.12)

and solving for T one obtains

T = K1K2/_ (C.13)

Furthermore, the constraint Im (B2) > 0 can be expressed as

K1 K2 > aT (C.14)

or

-< KIK 2
0>0

T

I KIK2
_> (_ (_<0

(C.15)

To insure that Im (B) > 0 on the entire top-sheet, it is required

that the argument of B2 be restricted to the domain given by

0 < Arg (B2) < 2_ (C.16)
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Figure C.l. Domain of B = (K2 - $2) 1/2 •
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on the top-sheet. This dictates that along the branch cut

Arg (B2) = 2_ . (C.17)

It follows that the branch cut is described by the equations

Im (B2) = 0 and Re (B2) > 0 (C.18)

Thus, the branch cut of the function B depicted in Figure C.2 has been

uniquely determined. It follows from Equation (C.16) that

2_ < Arg (B2) < 4_ (C.18)

and Im (B) < 0 on the entire bottom sheet as required. The bottom sheet

is shown in Figure C.3 and the signs of Re (B) and im (B) on the entire

two-sheeted s-plane are summarized in Table C.1. For the special case

of k2 = O, the two sheets of the s-plane are depicted in Figures C.4

and C.5.

TABLE C.1

SIGNS OF Re (B) and Im (B)

Re (B)

TOP [] _

SHEET r-l +

BOTTOM [] +

SHEET [_] -

Im (B)
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S-PLANE

1

1"

v

HYPERBOLIC

BRANCH CUTS OF

Figure C.2. Top sheet: Im (B) > O.

T

S-PLANE

"<,4"_Y.Z'_4_.,"/ ,.

HYPERBOLIC

BRANCH CUTS OF j3

Figure C.3. Bottom sheet: Im (B) < O.
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S-PLANE X
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--L

/

//
/
/

J f

m_-O

Re_ "O

_Z

Figure C.4. Top sheet: Im (B) > O, K = K1.

L'_ -o

7yfZ- --" '__- -/_-///_-/_

Re_/__ =_ -0

.-_HYPERBOLIC
BRANCH CUTS OF

Figure C.5. Bottom sheet: Im (B) < O, K = K1.
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APPENDIXD

FACTORIZATIONOFTHEFUNCTIONSGe(s) ANDG°(s)

The factorization of a function G(s), which is regular and free of

zeros in a strip T_<T<T+,meansthat G(s) can be expressed as the

product of two functions such that

G(s) : G+(s) G_(s) (D.I)

where G+(s) and G_(s) are regular and free of zeros in the upper and

lower half s-planes Im(s)>T_, and Im(s)<T+, respectively. There is a

formal procedure for obtaining G+(s) and G_(s) [32,34]. That is, if

G(s) has the properties mentioned above, and G(s)+l uniformly as Isl÷®

inside the strip • <Im(s)<T+, then [32,34]

iiiLog o,u,_ iiG+(s) : exp 2_i f u-s du

-_+i C

, T_ < c < T < T+ (D.2)

is regular and free of zeros in the upper half s-plane defined by

Im(s)>T_, and

-1 _+id Log[G(u)]

G_(s) = exp j 2_i f u-s du
_ -=+i d

, T_ < T < d < T+ (D.3)
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is regular and free of zeros in the lower half s-plane defined by

Im(s)<_+. Note that a branch of the logarithm is choosen so that

Lim Log[G(s)]=O within the strip T+<T<__.
Is1÷®

Furthermore, the functions

G+(s) and G_(s) have the following properties:

G_(s) = G+(-s) (D.4)

and each tends to unity in that half-plane in which it is analytic

[37].

1. EVEN Function

In this case, the function Ge(s) is given by

B

Ge(s) - B+k_ (D.5)

which is regular in the .strip defined by -Im(K)<Im(s)<Im(K). Define the

function $(s) as

K_
= Ge-l(s) = I +-T_(s) (D.6)

where B was defined in Appendix C. The function ¢(s) will be factorized

into the product of the functions ¢+(s) and $_(s) such that

¢(s): ¢+(s)¢_(s) (D.7)

It follows from D.7 that

and

Ge(s) = $+l(s) (D.8)

Ge(s)_ = ¢-l(s) . (D.9)
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The first step in the factorization of ¢(s) is to take the

logarithm of (D.7), that is

Log[_(s)] = Log[_+(s)] + Log[__(s)] (D.IO)

As suggested by Weinstein [37], it is easier to factorize the function

¢'(s)/¢(s). Thus, taking the derivative of (D.10), one gets

_'(s) _+(s) _'_(s)

X(s)- _(s)- _+(s)+ __(s)- X+(s)+ X_(s) .
(D.11)

Substituting (D.6) into (D.11) yields

K8 s

X(s) = B_(B+KS) . (D.12)

Note that the branch points ±K of B are also poles of X(s). Thus, the

factorization of the function _(s) reduces to the decomposition of X(s).

It follows from [32,37], that

and

-1 _+id X(u)

X_(s): _T f u-s
-®+id

1 "+ic X(u)

X+(s)- 2_i f u-s

-'+ic

du , T_ < T < d < T+ (D.13)

du , T_ < c < T < T+ (D.14)

where T_=-Im(K) and T+=Im(K). The function X_(s) will be computed

first, followed by X+(s). First of all, the path of integration is

deformed upward in (D.13), so that it encloses the branch cut K÷+i® as

shown in Figure D.I. Next, assume there is a pole Up (that is,
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B(Up)=-Ka) enclosed by the contour. Note that Up is enclosed by the

contour if Im(K6)<O. Then,

X_(s) = 2_i [Res(Up) + Res(+K)]- f - ] - ]

r cI c2

where the contours r, Cl, and c2 are depicted in Figure D.I.

shown that the integration along the contour r does not contribute to

X_(s), that is

X(u)
f u-s du : 0
r

(D.15)

It can be

(D.16)

Define the constant { such that

cos{ = a 0 < Re(_) < _/2 (D.17)

where Im(a)<O implies Im({)>O.

u = Ksin{
P

It follows from (C.1) that

(D.18)

Now, the residues at Up and +K can be computed such that

1

Res(+K) - 2_i2(K-s)

and
-1

Res(Up)"" = 2_i(Ksin{-s)

Substituting (D.19) and (D.20) into (D.15)yields

1 1 Ka udu

X_(s) - 2(K-s) + s-Ksin_ + _-_cl B (u-s)(BZ-K_Z)e

Note that along the contour c2, Im(B)=O, and Re(B)>O.

(D.19)

(D.20)

(D.21)
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Figure D.I. Integration path of Equation D.15.
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TOP SHEET OF_-SURFACE

Figure D.2. Integration path of Equation D.25 in periodic a-plane.
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The next step in the analysis is to map from the u-plane to the m-plane.

That is,

u = K sin _, , -_ < Re ((I) < _ (D.22)

and

B = K cos _ (D.23)

s : K sin _ (D.24)

where it is assumed that Im(K)=O for convenience. The mapping in (D.22)

and (D.23) is discussed in more detail in Appendix F. Substituting

(D.22), (D.23) and (D.24) into (D.21), the last term in (D.21)

becomes

K_
I I/'_l I -- P I", {' _'

--f - f
_i c2 B (u-s)(B2-K2a 2) c2=

sin _

(sinm-sin_')(sin2:-sin 2E)
(D.25)

where c2_ is shown in Figure D.2. Evaluating the integral along c2_,

one finally gets [37]

D

I 1 1 I-- _+E =+_-E I

- + - I - IX_(s) 2(K-s) 2(s-Ksin) 2_Kcos; _sin (_+E) sin (_+;-E)_

(D.26)

Substituting (D.26) into (D.11), and integrating X_(s), one obtains

--sinE-si n --]1/2$_(Ksinm) = I "iL-_sin; _" exp
0 < Re(E) < _/2 (D.27)

where

:+E t

J(_) : f s-_nt dt

_+_-E
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Note that the fact that ¢_(-i®) = 1 has been used to obtain (D.27).

Using the identity _+(s) = ¢_(-s), it follows that ¢+(s) is given by

-11/2
inS+sin_" I exp¢+(Ksin_) = I 1+sina

m _

1-1_-_ J(- , O<Re(5)<_/2. (D.29)

Substituting (D.27) and (D.29) into (D.9) and (D.8), respectively,

yields

- l+sinm I exp J(- O<Re(5)<_/2 (D. 30)
Ge(Ksin_) = sin_+sinot I

which is regular in the upper half s-plane defined by Im(s)>-Im(K), and

I--1-sinm --II/2
J O<Re(5)<_/2 (D.31)

is regular in the lower half s-plane Im(s)<Im(K).

2. ODD Function

The odd function is given by

1 Ge(s)
=_ = (D.32)

G°(s) B+K6 B

Note that the function B can be expressed as

112 112

B : (K-s) (K+s) (D.33)
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112
where (K-s) is analytic in the lower half s-plane defined by

i/2

Im(s)<Im(K), while (K+s) is analytic in the upper s-plane

Im(s)>-Im(K). Substituting (D.33) into (D.32) yields

G°(s)

Ge(s)
112 112 •

(K+s) (K-s)
(D.34)

It follows from (D.30), (D.31), and (D.34) that

exp[1/2w J(-:)]

GO(Ksin_) = 112 , 0 < Re(_) < _/2
[K(sin{+sin:)]

(D.35)

is regular in the upper half s-plane Im(s)>-Im(K), and

exp[1/2_ J(_)]
GO(Ksin_) = 112 , 0 < Re(_) < _/2

[K(sin{-sin:)]

(D.36)

is regular in the lower half s-plane Im(s)<Im(K).
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APPENDIX E

DECOMPOSITION OF THE FUNCTIONS De(s) AND D°(s)

The decomposition of the function D(s), which is regular in the strip

T_<Im(s)<T+, means that D(s) can be expressed as the sum of two

functions D+(s) and D_(s) such that

D(s) : D+(s) + D_(s) (E.I)

where D+(s) and D_(s) are regular in the upper and lower half s-plane

defined by T>T_ and T<T+, respectively.

There is a formal procedure for obtaining (E.I) [32,34], however,

for the functions needed in this study, the decomposition can be

achieved by inspection. First, the function in Equation (3.62) will be

considered, followed by the one defined in (3.128).

1. EVEN Function

The function De(s) is given by

De(s) = _e(s) G_(s) :

ivky(1-R e) Ge(s)

!

B (S+kx)

where G_(s), which was computed in Appendix D, is regular in the

half-plane Im(s)>-Im(k). Substituting (3.83) into (E.2) yields

(E.2)

364



, I -liVky (I-Re)

De(s) = (-_+k_i + ," (E.3)I' Ge-(s) (S+kx)_

I

where T_=-Im(kx) , T+=Im(k), and Ge(s)_ is regular in the lower half plane

Im(s)<Im(k). The second term in (E.3) can be rewritten as follows:

I

Ge_(s)(s+kX)  ,il+- , ,. (E.4)

(s+kx) e(s) Ge.(-kx) (s+kx) Ge(-k x)

Substituting (E.4) into (E.3), one obtains

De(s) =

im

ivk;(1-Re) 1 1

, , - G_(s)

k6e . (S+kx) e _kx)

-I

IL-Ii-ii• , - ,Ii .(S+kx) e s) Ge(-kx )_

After studying carefully the expression in (E.5), one concludes that the

first term in (E.5) is regular in the upper half-plane Im(s)>T., while

the second term is regular in the lower half-plane Im(s)<T+. Thus,

D:(s) and De(s)_ are given by

I- -I_v_;(*-_e),! ,__e(,)
D:(s) = /_ k_e (S+kx) iGe(mkx) __I

(E.6)
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and

iVy

= I m

De(s) _ k_ e (S+kx) e s) Ge(ikx )
(E.7)

2. ODD Function

It follows from (3.128) that

DO(s ) _O(s ) GO(s ) v B GO(s )
= = _ (l+Ro) i (S+kx)

(E.8)

where G°(s), which is defined in Appendix D, is regular in the upper

half-plane Im(s)>-Im(k). Solving for 8 in (3.121), one gets

1

: -_ _ k6o
B GO(s )

(E.9)

Substituting (E.9) into (E.8)yields

voli oo s:i
D°(s) - _ S+kx)G°(s) (s+kx)

(E.IO)

where G°(s), which is also defined in Appendix D, is regular in the

lower half-plane Im(s)<Im(k). The first term in (E.IO) can be rewritten

as follows:

_I -_ _x,-I _ ., - , _- .)'I + , ,(S+kx) G°(S)_ (S+kx) _G°(s)- G°(ik_ _ (S+kx) G°(-kx) (E.II)

Substituting (E.11) into (E.IO), one obtains
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D°(s) -
vi (I+Ro )Iiii:I' ( -S+kx) o s)

÷

_-I

(s+k')x °-(-kx)

It follows from (E.12) that D°(s) is given by

(E.12)

I: -Iiv (I+Ro ) 1

°(s) = , , - kSoG°+(s)D+ (,_+k _ _ O(_k '_
' - "'X ' .... I_--" "'X ' _I

(E.13)

which is regular in the upper half-plane defined by Im(s)>T_, and D°(s)_

can be expressed as follows:

 ,ilD°(s) = ' i " (E.14)- r_ (S+kx) o s) G°(-kx

which is regular in the lower half-plane defined by Im(s)<T+.
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APPENDIX F

ANGULAR SPECTRAL MAPPING

1. Mapping to the periodic C-plane.

To simplify the analysis, assume that K=K1 is real, that is,

Im(K)=K2=O. Next, let

s =Ksin (F.I)

where s was defined in (C.2) and ¢ is given by

¢=u +i_ (F.2)

Substituting (F.2) and (C.2) into (F.1) yields

: K sinu cosh_ ; T = K cosu sinhu (F.3)

It follows from (C.1) and (F.I) that

2 2 2 112

B = Br+i81 : (K -K sin _) = K cos_
(F.4)

where

Br : Kcosu coshu BI : -Ksinu sinhu (F.5)

Note that Equations (F.3) and (F.5) map a finite-width strip (width of

2_) in the _-plane to the entire two-sheeted plane of B(s) depicted in

Figures (C.4) and (C.5).
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In order to have a one-to-one mapping, the real part of _ is

restricted to the interval -_(Re(_)=u(_. This can be achieved by an

inverse mapping from the two-sheeted plane of B(s) to the _-plane. The

inverse mapping can be obtained by solving for _ in terms of s and B(s)

such that

B

cos = (F.6)

and

is

isin_ = --_ . (F.7)

Adding (F.6) and (F.7), one gets

_n=d, + _=_n,,,= el# 13+is- /c o_
......T ....._, K " _,.v)

Taking the logarithm of both sides of (F.8) and dividing by i yields

where

Log(z) = Loglzl + i Arg(z)

(F.9)

; -_ (Arg (z) ( _ . (F.IO)

It follows from (F.9) and (F.10) Cor from (F.3) and (F.5)) that the

two-sheeted plane of B(s) maps to the S-plane as shown in Figure (F.1).

The top-sheet maps into the region indicated with cross-hatching, and

the branch cuts of B(s) in the s-plane become the lines depicted in

Figure (F.1). It is obvious that the effect of the mapping is to open

up the function B(s) so that the branch cuts of B(s) are replaced by

lines in the S-plane.
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One of the reasons for mapping into the C-plane is that it is

easier and more natural to perform the asymptotic evaluation of the

inverse Fourier-Transform in the C-plane. This mapping is usually

referred to as the Angular Spectral mapping.

2. Mapping to the w-plane

In order to have the saddle point of the integrands in the inverse-

Fourier Transform integrals equal to the observation angle @, it is

necessary to make one more mapping, which is a simple translation of the

imaginary axis of _. That is, let w be equal to

w = m+iy = _h+ _ = u + _ + iv . (F.11)

Substituting (F.11) into (F.1) and (F.4)yields

s = -Kcosw = -Kcos(a+iy)

and

B = Ksinw = Ksin(m+iy)

(F.12)

(F.13)

Expanding Equations (F.12) and (F.13) one obtains

o = -Kcos_ coshy , T = Ksina sinhy

Br = Ksina coshy , BI = Kcosa sinhy

(F.14)

(F.15)

The w-plane is depicted in Figure 3.7.

restricted to the interval

37

- _< Re(w) = (l < --_

Note that the real part of w is

(F.16)
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APPENDIX G

SADDLE POINT METHOD I

1. One Pole Near Saddle Point

In this section a method is discussed for evaluating a particular

integral by the saddle point approximation technique. This method is

discussed in more detail in [38].

Assume that the integral is of the form

l(K) : f M(z)eKf(Z)dz (G.1)

C

where K is real and positive, and the path C is choosen so that the

integral converges. Let z s be an isolated, first order saddle point of

the analytic function f(z). That is,

f'(Zs) = 0 and f"(Zs) @ 0 . (G.2)

Also assume that M(z) is an analytic function, except at a finite number

of singular points which are not close to the point z s. Furthermore,

assume M(z) has one simple pole z I close to the saddle point. Next,

define the transformation

2
f(z) = f(Zs) - u (G.3)
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from the z-plane to the u-plane, where the descending part of C is

mapped onto the positive real u-axis. It follows from (G.3) that

Kf(z ) - dz e_KU 2
I(K) = e s I M(z) _uu du (G.4)

dz

where one assumes that _-_ has no poles close to the saddle point.

Therefore, the function Nl(U ) given by

7N1(u): (z)_ (u-uI) (G.5)

is analytic in the neighborhood of uI and u=O, which means that it can

h_, ,_vn;_nH_tt in ;t Tavlnr, ¢_r'i_¢ _llrh 1"hat"

NI(U ) = _ Amum . (G.6)
m=O

Now, define aI such that

aI = i Ef(zs) - f(zl)] . (G.7)

Substituting (G.6) into (G.4), and assuming K is large, yields

Kf(zs )
Is(K ) ~ e _ Am Im

m=O

(G.8)

where

® ume -Ku2 (u+u1) du

Im = f u2 + iaI
(G.9)
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In practice, usually the first term in (G.8) is computed. That is,

for K sufficiently large

Is(K) ~exp (Kf(zs)) Ao Io ° (G.IO)

It is shown in [38] that

Ao = NI(O ) : -UlM(Zs)

112

iCs
e (G.11)

and

ikal I--_ --I 1/2 ® 2I o = 2 u I e [ e -it dt (G.12)
i-ll

(Kal)I/2

where ¢s is depicted in Figure G.I. Substituting (G.11) and (G.12) into

(G. 10) yields

Is(K) ~ M(Zs) exp(Kf(zs))

1/2

ei Cs
F(Kal) (G.I3)

where F(Kal) , which is referred to as the transition function [11], is

defined given in (3.197). In order for F(x) to converge, the argument

112 I12

of x is restricted to [41] -3_/4 < arg (x ) < 7/4.
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2. Twopoles near the saddle point

NowassumeM(z) has two poles, zI and z2, near the saddle point zs.

In this case, the function N2(u) given by

dz
N2(u) = M(z) _uu(U-Ul) (u-u2) (G.14)

is analytic in the neighborhood of u=O, Ul, and u2.

expandedin a Taylor series such that

Thus, N2(u) can be

N2(u) = Z cmum (G.15)
m=O

a,u uulnu L.lu_ IJUUrll.. U-Uo auu3i..ll.Ul..lll_ _L1.J.;..)) IIII..U _L1.6.1 .) ClIILI IUI- Idl'_ I_ I,

one obtains

Is(K ) ~ expCKf(zs) )

N

Z cm Im (G.16)
m=O

where

2
-Kum

~ ® u e

Im = f (U_Ul)(U_U2) du
m_

(G.17)

and

a2 = i [f(Zs) - f(z2)] (G.18)

The denumerator of the integrand in (G.17) can be expanded in partial

fractions such that

I 1 I--U+Ul u+u2- I

(u-u)(u-u )=u-u I u2+ia - u2+ia I

t 2 t 2 i_ 1 2_1
(G.19)
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Thus, Tm can be rewritten as follows:

:o 2

1 m -Ku
- f u e

m Ul-U2 _®

I--U+Ul u+u2 --I

u +ia 2 I

du

Again, keeping only the first term in (G.16), Is(K) is given by

N

Is(K ) ~ expCKf(zs) ) co Io

(G.20)

(G.21)

where

I/2 I- iKal
2(7) uI e ®

T°= ul-uzI_ (aI)I/2I 1,2
(Ka I)

2
-it

e dt

e u2 ® _it 2

(a2)112 J" e
(Ka2)l12

(G.22)

The constant co is easily evaluated by setting z=zs (u=O) in (G.14) such

that

dz I

Co = N2(O) = M(Zs) _uu IIz=zs
(_Ul)(_u2) . (G.23)

Furthermore, it is shown in [38] that

dz

du
Z=Z s

i12

iCs
e (G.24)
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Substituting (G.22)-(G.24) into (G.21)yields

i¢ s
Is(K)-M(zs)exp(Kf(zs))e

112
112

(Ka2)I/2F(Kal)-(Kal) F(Ka 2)

(Ka2)I/2 - (Kal)I/2

(G.25)

I
COMPLEX z-PLANE I

Figure G.I. Definition of the angle Cs" The direction of integration

along the path SDP is indicated by the arrowhead.

(Figure copied from: Proceedings of the IEEE Vol. 55,

August 1967, pp. 1496-1497, R.H. Schafer, R.G. Kouyoumjian)
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APPENDIX H

SADDLE POINT METHOD II

(One Pole Near Saddle Point)

In this section, the evaluation of (3.231), when the saddle point

z s is Zs=_, is discussed. The saddle point method used here is the one

developed by Felsen and Marcuvitz [42]. It is shown in [42], that the

first term in the asymptotic expansion of (G.I) when a simple pole z I of

M(z) is near the saddle point, is given by

Is(K ) ~ exp(Kf(zs) ) -+2ia_ e "Kb Q[_ibV_] + (_) T(O) ,

Im(b) > O, K + ®

where

a : Lim [M(z)(z-zl) ]
Z+Z 1

b : (f(Zs) - f(zl) )

112

I-- --I 112

h = f,,(zs
D

I-- il 112

2

?"Tzs)

a

T(O) : hM(Zs) + _-

(H.1)

(H.2)

i¢ s
e

(H.3)

(H.4)

and
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Q(Y) = 7 e-X2dx

Y

(H.5)

The argument of b is defined [42] so that b +
Zl-Z s

h as zI + zs.

Since the function Mo(Z), defined in (3.227) is equal to zero when

Zs=_, it follows that

a

T(O) = _ . (H.6)

Since Mo(Z ) has two simple poles at z1=_-¢' and z2=_+¢' (¢'4:0), the

asymptotic evaluation of (3.231) is given by

-- 2 i12 -a 9 --[

Is(K) ~exp(kpf(Zs))l 2ia2V_exp('kpb2)Q[-ib2V_'_] + ('/(kP)) b2 1

- 2ia14"_ exp(-kObl)Q[ibl_-p] + (_/(kp)) lza

(H.7)

where

bI = -V_ ei_/4 sin(¢'/2) , Im (bl) < 0 (H.8)

and

b2 = V_2"ei_/4 sin(¢'/2) = -bI , Im (b2) > 0 (H.9)

f(Zs) = i . (H.IO)

Since b2 = -bl, Equation (H.7) can be rewritten as follows:
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Is(K ) ~ eikp
I 2iV_ exp(-kpb_) O[-ib2k_p] + (_/(kp))

-I

112 I
/b2 (al+a 2) •

(H.II)

Next, the constants aI and a2 are evaluated. Substituting (3.227) into

(H.2), one obtains

__._(_,ri__-.0 .... ,_, .nFO+cos , 112

(sin¢'+sin{°) 2

•ex_I_ E_(,_I+_(_I (H.12)

and

112
sin_'[(sin_°-cos_')(sin_°+cos¢ ')]

(cos{°-sin ¢')(cos{°+si n¢')

l--1 o _, }
• exp [d_(,+¢') + dl( )]--12 _ (H.13)

where

2 2

b2 = 2isin (¢'/2) = i(1-cos@') (H.14)

For large l,/'I_ b21 , the first term in (H.11) becomes [42]

2

2i_ exp(-kpb2) QE-ib 2 _nK'_]~ -(_/(kp))

112
/b2 as I_E-pb21 +®.

(H.15)

Thus, when IJ_"pb21 is very large, Is(K) which is approximated by only

the first term of its asymptotic expansion, approaches zero as expected.
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APPENDIX I

EXPRESSIONS FOR Ex,z AND Hx,z IN TERMS OF Hy AND Ey

Evaluating Equations (1.1) and (1.2) in rectangular coordinates

one obtains the following six equations:

BEy aEx

iknoHz = _xx - By (I.1)

BEx BEz

Hy =----- fl.2)ikno _z ax " --

BEz BEy
(I.3)

iknoHx =--By ---Bz

BHx BHy
(1.4)

ikYoEz = a-y-'- Bx

BHz BHx " (I.5)
ikYoEy =--Bx ---az

BHy BHz
(I.6)

ikYoEx = az By

Taking the Fourier transform of (1.1) through (I.6) with respect to x,

and assuming all the field components have a z-dependence of the form

I

exp(ik zz) yields

381



ik_o_, isEy ByB_X

ik.o_y=ik__x÷i_,

^ BEz ,

iknoHx= T - ikzEy

BHx
ikYoE z : _ + isHBy y

ikY o y = i - ikz x

,,, BHy
ikYoE x : ik z Hy - By

(1.7)

(1.8)

(I.9)

(1.10)

(1.11)

(1.12)

Furthermore, it follows from (3.31) that

B2Ei 2

By2 : B Ei for y • 0 , i = x,y,z

and

B2Hi 2

(1.13)

for y • 0 , i : x,y,z . (1.14)

Taking the derivative of both sides of (I.9) with respect to y and using

(I.13) yields

BHx 2,, , BI_v

ikn o y_-_-=-B Ez- ikz By-- • (1.15)

Substituting (I.15) into (I.10) and after some simplification one

obtains

, BEy(S,y,z)
knos Hy(s,y,z) + ikz By
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Hz can be obtained in a similar fashion, however, itThe expression for

is easier to use duality [20]. That is, substituting (I.16) into

(4.1097 (where y is replaced by z), one obtains

ikz _Hy(s,y,z) - kYoS Ey(s,y,z)

I_z ( s ,y ,z ) By: ,2 . (1.17)

Cs2 + )

AThe first step in solving for Ex in terms of Ey and is to take

the derivative of (I.17) with respect to y such that

_Hz

_Y

, 2

-ikz B Hy - kYoS a__-

(1.18)

where equation (I.14) has been used to simplify (I.18). Substituting

Equation (I.18) into (I.12) and after some simplification, one gets

ikz Hy(S,y,z)+ sYo @Ey(s,y,z)

Ex(s'Y'Z)= .,2 (1.19)

iYo CS2 + kz )

Again, to get the expression for Hx' one can follow a similar procedure

as the one used to obtain Ex" However, it is much simpler to use

duality. Thus, substituting (I.19) into (4.1097 (where y is replaced by

x) yields

x(S,y,z) =

!

sno _H},(s,y,z) -ik z kEy(S,y,z)

12
ino Cs2 + kz )

(1.20)
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APPENDIXJ

CALCULATIONOFTHEFRESNELREFLECTIONCOEFFICIENTSOFA GROUNDED
DIELECTRIC/FERRITESLABUSINGTHETRANSVERSERESONANCEMETHOD

Figure (J.1) illustrates the geometry for the problem considered in

this appendix. The dielectric/ferrite slab has a thickness t, and it

can be backed by either a perfect electric conductor (PEC) or a perfect

magnetic conductor (PMC). Region 1, which is characterized by (¢i,Ul)

is the region 7>0, while Region 2, characterized by (_2,1J2) is the

region -t<y'<O. A plane wave is incident on the slab at an angle 01 from

the y-axis. The transverse resonancemethod [21] models the geometric

depicted in Figure J.1 by an equivalent transmission line circuit as

shown in Figure J.2.

•

(a,,, _o)

z Prc on Puc Y

REGION (_)

; _--_x

• • _'m. t

Figure J.l. Grounded Dielectric/ferrite slab.
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where

: (-xsine'cos@' -ysine'sin¢' - zcosO') k I (J.4)

cose I = sinO' sine' (J.5)

It follows from Snell's law that

sinB 1 = N sinO 2 (J.6)

where

m =

112

(J.7)

The characteristic impedances for both polarizations are as

follows:

TEy wave (Hy): Zh1,2 -

k1,2n1,2

B1,2
(J.8)

wave ..CEy): ZaTMy 1,2 -

where

nl,2

nl,2

--Pl _ 2.- I 112 112

= " kl = _(el " Ul 2 )
I c1'2 I ' ,2 ,2 ,

(J.9)

(J.lO)

and

B1 : klCOSe I

2 112

B2 : k2cose 2 = k2 (1-sin 82)

2 2

= kl(N -sin 01 )

112

(J.11)

(J.12)
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Note that Zs, the equivalent load impedance at y%-t is given by

I_o,or_IZs = for PMC_J

(J.13)

Substituting (J.13) into (J.1) yields

Zin(F:O>:l--iZ2tan(B2t) for PEC--I
J_ iZ2 cot (B2t ) for PMC_J

(J.14)

Next, the Fresnel reflection coefficients for both polarizations

are computed.

I. TEy POLARIZATION (Hy)

The reflection coefficient for this polarization at _=0 can be

written as follows:

Rh(_=0) = Zin(_=O) - Z1h ='--_HyrJ
Zin(_--O) + Zlh HyI _=0

(J.15)

When there is an electric wall (PEC) at _=-t, the reflection

coefficient is

-iZh tan(S2t) - Z_

-iZh tan(B2t ) + Z)

(J.16)
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NORNRLIZED 10 IDOl =-)3.900

180 °

PLANE WAVE INCIDENCE [E_]

= 3.0l d = O.051

¢r = 5.+i0.5 ur = I.

¢' = 45 ° e' = 90 °

p = 50),

Figure 8.31.
S

Magnitude of the scattered field Ez with the diffracted

.dsw included (see Figure 8.30).surface wave field tz
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When there is an electric wall (PEC) at y'=-t, the reflection coefficient

can be written as follows:

Z_ + iZ_ tan (B2t)

= . (J.21).n

Substituting (J.9) into (J.21), one obtains

Cl 2 2 1/2 2 2 1/2

cos01+i -_ (N -sin 01) tan [klt(N -sin B1) ]

Re(; =0) - _1 2 2 I/2 2 2 112. (J.22)

cosOl-i -_ (N -sin 01) tan [klt(N -sin 01) ]

Finally, if there is a magnetic wall (PMC) at _=-t, the reflection

coefficient becomes

-i cot(B2t)
° (;=0) = . (J.23)Ra a

Z_ + iZ2 cot (B2t)

Substituting (J.9) into (J.23)yields

Cl 2 2 112 2 2 112

cosel-i -6_ (N -sin e1) cot [klt(N -sin e 1) ]

R°(Y =0) - El 2 2 I/2 2 2 I/2 • (J.24)

a cosBl+i -_ (N -sin 61) cot [klt(N -sin B1) ]
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APPENDIX K

RAY-FIXED COORDINATE SYSTEM FOR GO FIELDS

It is well known that the natural coordinate system for the GO

÷i
fields is the one depicted in Figure 6.1. The propagation vector k

for the incident field defined in Equation (4.4) is given by

_i = k si , (K.I)

where

S A _' = -x sin e' cos¢' -y sine' sin¢'- z cose' (K.2)

It follows from (6.5) - (6.7)that the unit vectors {uil, ul, u_}, and

sr are given by

^i
U

sin2e Y 2 2¢, zsin cos sine'-x 'sin¢'cos¢' + (l-sin 0'sin ) - O' @'

A

II )_lx S'I (K.3)

A

U
J.

A A

zsine'cos¢' - xcose'

(K.4)

^r sin2e Y 2 2x 'sin@'cos¢' + (1-sin e'sin @') + zsine'cos@'sin_'

un = A A

In x s'l (K.5)
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and

A

sr = -xsine'cos¢' + ysinO'sin¢' - zcosO' (K.6)

A A

where n=y, and

2 2(_ l 112In x s' I = (1-sin e'sin ) (K.7)

i i i
Thus, the field components Es, , El, and EI can be expressed as

follows:

i i ' - Ei sinB'sin+' - Ei cosB')
Es, = (-Ex sine'cos+ y z

(K.8)

i Ei 2 2 2
El = (- x sin O'sin+'cos¢' + Ei (1-sin B'sin +')Y

1
i

- Ez sinB'cosB'sin+') (K.9)

and

i i i
EI = (-Ex cose' + Ez sine'cos+')

(K.IO)

The fields Ei and i i and H_ only such thatx Ez can be written in term s of Ey

2 +' i
noCOSe' Hy + sin e° cos sin+' Ey

Ei (K.il)= - 2

x l x;'l

sin+' (noCOS_' Hi -cosB'sin_' Ey)Y

i (K.12)
= 2 •Ez In x ;'1
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Substituting (K.11) and (K.12) into (K.8) through (K.IO) yields

E_, = 0 (K.13)

Ei

• Y (K.14)

_i n°H;

L1 - (K.15)

where Ei and Hi were defined in (4.4) and (4.42) respectively.
Y Y

r
Furthermore, the field components for the reflected field, that is, Es,

r r
E l and EI are given by

Ers = -Erxsine'cos¢' + E; sinO'sin¢' _ Ezrcos e' (K.16)

-cose' Er + r ##,x Ez sine'cos

r (K.17)
Ej. : In x

r
Ell =

2 2 2##? rEr sin e'sin##'cos##' + Er (1-sin e'sin ) + Ez sine'cose'sin¢'x y

(K.18)

where

E r = _

X

2 ¢' , r
noCOSe' H; - sin e'cos sin## Ey

• 2 (K.19)i x 'l
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sine'

Ez_r {n x s'{2 (Ey cosO'sin,' + noCOS,' Hy) . (K.20)

Substituting (K.19) and (K.20) into (K.16) through (K.18) yields

Er = 0
s

(K.21)

r

noHy

r (K.22)
_-I; x _'1

Er
Y

r _ (K.23)
E, l; x -_'1

It follows from (6.3) and (6.4) that

{- + +R_ i_r
"r ^ _ _

_r(x'Y'Z) = { EcyUl 2 + Hcy u± no 2 _{ {n x s'{} - {
(K.24)

and

÷

ei_ i, r

6i(x,y,z)(;i,_cy+no;,Hey)Inx_I (K.25)

where

cr = k_r (K.26)

A ^ A

r=xx+yy+zz (K.27)
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Let _r be the point of reflection (QR) on the x-z plane, that is

.._ ^ ! ^ I

rr = x xr + z zr . (K.28)

It follows from (K.28) that

• I I

CI - _r = -k(Xr sinB'cos_' - zr cose') (K.29)

and

÷ ÷ ^r r

r=rr+S s

where sr is the distance from the point of reflection QR to the

observation point. Substituting (K.30) into (K.27), one obtains

!

x = xr - srsine'cos¢ '

y = srsine,sin¢ ,

!

Z = Z - srcose '
r

Solving for sr from (K.32) yields

r
s

Y

= sine'sine' , Y • 0 .

(K.30)

(K.31)

(K.32)

(K.33)

(K.34)

It follows from (K.29) through (K.34) that

+ r " +_-r . _ = k sr • _r + srk = k ' . rr + ks = £I . rr + ksr . (K.35)

Finally, substituting (K.35) into (K.24), one gets

+r r ÷i = iks r
E (s) = E (QR) • R e (K.36)
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where

• " i i
Eh(QR) = Ull E I (QR) + u.i" Ej. (QR)

and

2 + u I uj. 2

Following the same procedure as above, it can be shown that the

transmitted field can be written as follows:

_t(st) = _i(QR) • _ eikst

where

+ uj. uj.

and st is the distance from (QR) to the observation point.

(K.37)

(K.38)

(K.39)

(K.40)
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APPENDIX L

RAY-FIXED COORDINATE SYSTEM FOR DIFFRACTED FIELD

The ray fixed coordinate system for the diffracted fields is

depicted in Figure 6.6. It follows from Equations (6.25) through (6.28)

that

^ I I ^ I

' = -x sin B° cos¢' -y sin Bo sine' + z cos Bo = - ' (L.1)

' = -x sin@' + y cos¢' (L.2)

^ I ^ I ^ I

' = x cos@' cosB ° + y cosB ° sine' + z sinB o (L.3)

Therefore, the field components Es, , E ,, and EB, can be expressed as

fol lows :

I I I

i = -Ei sinB o cosO i iEs' x ' - Ey sinB o sinO' + Ez cos Bo (L.4)

i i cos¢'E , =-E x sine' + Ey (L.5)

I !

Ei8, i cos¢' cos Bo + i i '= Ex Ey cos Bo sin_' + Ez sin Bo (L.6)

The field components Ei and i i i
x Ey can be expressed in terms of Ez and Hz

only. Thus, it follows from (4.186) that

Ei 1 i _, i
x - sinO' (no sin_' Hz - cosO'cos Ez) (L.7)
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Ei Z m u

Y
1 ¢, i + cose'sin¢ i

sine' (no cos Hz ' Ez) (L.8)

!

where e' = _ - Bo. Substituting (L.7) and (L.8) into (L.4) - (L.6)

yields

Ei = 0
S _

(L.9)

-no Hi
Z

!

sin Bo

(L.IO)

Ei

EiB, _ z
sine'

0

(L.11)

Next, the fields E_, E , and E are computed. The unit vector s and 8

depicted in Figure (L.1) can be expressed in terms of the spherical unit

vectors R and e as follows:

A

= - R cos (e+e') + e sin (e+e') (L,12)

= - cos(e+e')- sin(e+e') (L.13)

The point of diffraction QE is given by

R sin(e+e')

Zd = sine' , 0 < e' < _ (L.14)

and s, which is the distance from the point of diffraction QE to the

observation point (P), is equal to
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Rsine

s - sine' , 0 < 8' <
(L.15)

It follows from (L.12) and (L.13) that

Eds = -E cos(e+e') + Ee sin(e+e')

and

d d d
EB = -ER sin(O+e') - E0 cos(e+O')

(L.16)

(L.17)

Furthermore, it can be shown that

jic IE = Ed ose +
z sine' (L.18)

d = Ed I-c°so'c°sO

and

n Hd

d o z

E¢-
sineo

(L.19)

(L.20)

Substituting (L.18) and (L.19) into (L.16) and (L.17) yields

Ed = 0
s

_Ed

d z

EB -
sineo

(L.21)

(L.22)

d d

Thus, the diffracted fields E¢ and EB are given by
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_I1_°'_°_
"c°s Bo 2 E , -ikRcos(O+O' )

e

D E , (1-sin 0 J-6

(L.23)

Furthermore, it follows from (L.14) and (L.15) that

!

-ikRcos(e+e') o +ikz Zd eiks = E_ (QE) eiks (L.24)
E_, e = E¢, e

!

o -ikRcos(e+e') o +ikz Zd iks i iks (L.25)

EB, e = EB, e e = EB,(QE ) e

and

I_x sl_ I§x sI'-(1-sin2 '-^ - = ^ = e'sin ¢)
(L.26)

Substituting (L.24) - (L.27) into (L.23), one obtains

_(_ I-_O_oI__I
I

1_:'I°_1

(L.27)

-ik s
e
------ (L.28)

VT

where

' _i

_ , __hi _' Bo) + (I¢I,¢' Bo)Sign¢]'i(_,#',Bo) = I/2 [Dze (I_I, , Dzo '

i = 1,2,

I

O< Bo<_ ,

(L.29)
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Dd I I Ii(¢,##' Bo) : 1/2 FDai (I##I##'so) + _ai (I##I,##'So)Sign##]' " ze ' ' zo ' '

i = 1,2,

I

0 < BO <_ ,

-_ < ## < _ (L.30)

I

D_zl : { cos## _da(##,##, Bo) [cos##'-(cos## + cos##')_'_e]ye ' •

2 _ , _dh. , ' _e]}/In x+ cos B sin##sin## Uyot¢,## ,B o) [1 - (cos## + cos##') sl 2

(L.31)

:  dh. 'D_n2ze { sin## yo{##',##,Bo)[COS¢' - (cos## + cos##') e]

I

+ cos## Eda(##, @,Bo)[_sin##, + (cos## + cos##')F'_e]}/In x ;I 2ye '

(L.32)

D'zal {cos## _dh. , ' _o : Uyo{## ,##,Bo)[COS##' - (cos## + cos##') e]

cosZB_si ' _+ n## _da" ,Uye{## ,##,Bo)[Sin##' - (cos## + cos##') e]}/In x sl 2

(L.33)

_a2 : { cos##sin¢' _dh(##, ¢,Bo)[ I _ (cos## + cos##') e]ZO yo '

+ sin## Eda, , ' _Uyet## ,##,Bo)[-cos¢' + (cos## + cos##') e]}/In x sl 2

(L.34)
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_da J i i

Uye(*,* ,B O)

_ei_/4 (1- R:)/2 [(sin_ae-cos¢)(sin_ae-cos¢')] !12

I

4_E sinB° (sin_ + cos_ ae)

•exp (-(j'_e(¢)+_e (¢,) )/(2_) ).[sec (B+/2)F (-KLa +)+se( B-/2 )F(-KLa-))

(L.35)

!

Ddh (¢,¢', Bo)yo

M

_eiy/4 (1 + R_)/2 [(sin_h°-cos¢)(sin_h°-cos,')] I/2

!

/_E sinB° (sine + cos_ h°)

•exp I-(_1° (¢)+_1° (¢') )/(2_)). (sec(B-/2) F(-KLa-)-se (B+/2) F(-KLa +))

(L.36)

i

L = s sin B° (L.37)

' 2 ' F_e_e(¢',Bo) = cos¢' F_e + 2cos BoCOS(¢'/2)sin(_') (L.38)

' 2 ' F_e_'_e(¢, 80) cos¢' ce• = F 3 + cos BoSin¢' (L.39)

_e (¢, ' F_e F_e,Bo) = - cos¢'/sin(@'/2) (L.40)
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e(¢',Bo) = sine' F e _ cos _' F_e (L.41)

I I I I =

F_e(@',Bo )= singo(SinBoCOS¢ ' - icOSBol_cel/[Bcel)/In x s'l 2

(L.42)

I I I I =

F_e(¢',Bo ): singo(SinBoCOS¢ ' + icOSBol_cel/IBcel)/In xs'l 2

(L.43)

I

F_e(_', Bo) =

si n BoCOS{ae (sin@' +cos {h°)exp ([,_h° (¢')_,_ae (¢,)]/(2_))-I -I

^ I I ~a
In x s 12 kl_cel(Sin¢,+cos_ae)(l+sinBoCOS_ e)

, ,))Iz2• /2K,- ((sin_ae-cos¢)/(sin_h°-cos¢ /sine' (L.44)

I

ce ¢,F4 ( ,Bo):

2sin(@'/2) (sin¢'+cos_ae)exp([ e(¢,)_ o(@,)]./(2_) )

A A

In x s'l 2 kI(_ceI( sine' +cos_h° )(l+sinB'oCOS_"h°)

v'mT"( (sin _°-cos ¢' ) / (sin _ae-co s ¢' ) ) I 12/cos ( _ae )

(L.45)
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='al (E_ho, pe_o_(_a°,_e_-- % / (L,46)

D_'h2zo(_'ao, _he) = -Uzo_a2(_ho, _ae) (L.47)

_'al (_ao, 'E'he) p1 (_o, _ae)
ze = ze (L.48)

_'a2 (_'ao,_11e) __2 (_'ho, _ae)
e = ze (L.49)
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Figure L.1 Relationship between the unit vectors O, B, R and s .
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